
 1

AVR Assembler for Complex Projects
Author: Dr. Thomas Redelberger redetho@gmx.de

Version 0.4 2019-04-06

Contents

1. Legal Notices ... 2

Copyright ... 2

Disclaimer .. 2

Translations ... 2

2. Preface .. 2

3. Key AVRASM2 Characteristics ... 3

No Linking .. 3

Two Pass Operation .. 3

C-Style Pre-Processor ... 3

Dynamically Generated Symbols .. 3

4. General Principles ... 3

Go for Well-Structured Source Code ... 4

Help Code Portability ... 4

Enable Performance .. 4

5. How to Structure the Source Code .. 4

Using the File System to Structure Code .. 4

Declaration Type Code versus Definition Type Code ... 5

Lexical Order of Include Files .. 5

Units of Functionality ... 6

6. It is All About Symbols ... 6

Scope of Names .. 7

Name Spaces .. 7

Labels for Control Structures ... 8

7. Implementing Functions and Interrupt Handlers ... 9

How to Use Macros to Trade Speed for Size .. 9

Using Macros with Include Files .. 9

Limiting the Scope of Functions and Variables ... 10
Functions Local to a Macro ... 10
Variables Local to a Macro .. 10

8. When to Use the C-style Pre-Processor? ... 11

9. Lexical Details.. 13

10. Using Processor Resources in an Optimal Way ... 13

To Use or Not to Use the Stack ... 13

How to Work with Structures and Arrays ... 13
Structures as Parts of Static Objects ... 15

Special Case EEPROM ... 15

What Registers to Use for What? .. 15

11. Program Flow and Concurrency .. 17

Concurrency Due to Hardware Devices .. 17

How Multiple Tasks Run Quasi Concurrently .. 17

Example Program Flow ... 17

mailto:redetho@gmx.de

 2

12. Tips and Tricks .. 18

How to Make Your Code Shorter and More Readable .. 18

Portability ... 19

13. An Example Development Environment under Windows .. 19

14. References .. 19

15. Appendix 1 - Shortcomings of the C-Pre-Processor ... 19

16. Appendix 2 - Register Usage Conventions ... 20

17. Appendix 3 - Macros to Deal with Structures .. 21

18. Appendix 4 - Macro to Create a New FIFO Instance .. 21

19. Appendix 5 - An Example Project: Software for a Synthesizer HUI .. 22

1. Legal Notices

Copyright

Copyright © 2016-2019 Dr. Thomas Redelberger redetho@gmx.de. All rights reserved.

You may quote and copy this publication provided you refer back to this original document and credit
to me. Any such copy must include these legal notices.

Disclaimer

This information is provided as-is. I do not take any responsibility and do not grant any warranty nor do
I imply any fitness for any purpose or kind, nor shall I be liable for any issues when using it.

Translations

Both the English and German language versions are from me. German is my mother tongue. Improve-
ment suggestions are always welcome. People are invited to do translations to other languages. But
they shall properly cite and credit me and refer back to this original.

2. Preface

This document addresses all people who want to write assembly code that is well structured, re-usa-
ble, easy to maintain and efficient. It is based on my own experience with Microchip (previously Atmel)
AVR 8-bit microcontrollers, which I program in assembler. This document is not an introduction to pro-
gramming AVR devices. In particular the AVR 8-bit instruction set and how to achieve various compu-
tational results are not covered in this document. Please see information elsewhere on the web re-
gards those.

I decided to use assembler language for my very first steps with AVR microcontrollers to learn how to
use them starting from the basics. For my first bigger AVR ATMega project I decided to stay with as-
sembler because the functionality I needed was very hardware related, was heavy in low level interfac-
ing and used very few mathematical computations.

I am using the AVR Assembler (AVRASM2) from Microchip. Thus, what I report here is most relevant
if you also use this assembler. Some tips might also be useful when using other assemblers. The older
AVRASM, which had been distributed with AVR-Studio earlier, does not have all the functionality
described here.

For many projects assembler will not be the optimal tool. GCC from the AVR-GNU tool chain is a pow-
erful, proven and free C compiler. Many example code and libraries are substantial advantages. You
might want to look also at the GNU Assembler (abbreviated GNU AS or GAS; in the AVR world it is
called avr-as). Presumably avr-as has a steeper learning curve than AVRASM2, but it is very powerful
and can be combined with GCC.

mailto:redetho@gmx.de

 3

3. Key AVRASM2 Characteristics

No Linking

AVRASM2 assembles directly from assembly source code to a binary executable (well, to a HEX file
that is a representation of the executable). There are no intermediate steps. There are no object or li-
brary files. This has the following pros and cons:

 When you assemble, you always use all the latest code. There is no need to check for the latest
versions, which you would usually using a tool like "make"

 Dependencies are explicitly specified in the source code. If linking was used dependencies
needed to be managed. Again, this is usually done using "make"

 Assembly time increases the more complex a project is, because everything needs assembling
every time. On today's development hardware I did not find this to be a serious issue. Example:
one of my projects consisting of 29 files and a total of 3 000 lines of code (LOC) assembles in less
than one second

 With AVRASM2 there is only one assembly unit and there is only one name space. This requires
extra care to avoid dangerous name clashes

 Code re-use is more difficult as for example in a GCC/avr-as environment. The programmer needs
to organise this on his own. In particular re-using assembly code from other people is hardly pos-
sible because there are no defined and agreed standards for software interfaces

 Mixing assembly code and code from other programming languages is not possible. This is a seri-
ous drawback, because for bigger projects you might want mix programming languages and re-
use code that was written in those.

Two Pass Operation

AVRASM2 is a "two pass assembler". This means AVRASM2 reads and processes the source file(s)
two times as two "passes". With the first pass over the source code it builds some tables it then re-
uses at the second pass. This allows for quite some freedom to arrange the order of code.

As a side note: Most C-compilers are single pass compilers. This forces some specific order of code,
like include statements need to go to the top of the including file.

C-Style Pre-Processor

Atmel had added a C-style pre-processor to AVRASM2. Pre-processor directives start with a "#" char-
acter instead of "." (Dot) which signifies assembler directives. According to Microchip, the C-style pre-
processor of AVRASM2 shall work like a standard C-compiler pre-processor.

Dynamically Generated Symbols

At first sight AVRASM2 does not allow for symbols that are generated dynamically. Using appropriate
macro programming, this is still possible to achieve. This can be used to implement control structures
for example similar to the C-language's "switch" statement. I describe this in detail at

 http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

4. General Principles

As with other programming languages, there are some general principles that you might want to
follow:

http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

 4

Go for Well-Structured Source Code

No doubt assembly code can look very "ugly". Ugly code is more difficult to understand, debug and
maintain. Thus, you might want to

 implement a clear hierarchy of the code that helps to understand the structure and purpose of the
code

 modularise the code to enable re-use.

Help Code Portability

Code portability here means to make sure the code can run on sufficiently similar AVR devices with no
or minimal changes.

Enable Performance

 Assembly code can yield superior speed to high level languages. However, this advantage should
not be overestimated. Today's compilers get very close to optimum speed

 What you can do at development (assembly time) do a development time rather than at run time.
Assembler has features and tools that allow to do that without negatively effecting the readability
of code.

All this requires using advanced features of AVRASM2. On the downside this might have the conse-
quence, that porting to another assembler - for example to avr-as - will require quite some extra work.

5. How to Structure the Source Code

Using the File System to Structure Code

It is common sense to reduce the complexity of a problem by breaking it down in smaller, less complex
parts. This strategy is called "divide and conquer". When programming, an obvious means to do this is
to break the source code in smaller units. Like with most developments tools, AVRASM2 supports
breaking up the source code in various files on the operating system's file system (Windows or Linux
supported by Wine in the case of AVRASM2).

In AVRASM2 the .include directive allows to structure the source code in a tree like manner. A pro-

ject must have a "main" or "root" source file which can include a number of other source code files,
which in turn can include more source code, such that a tree is formed. If an include file contains an-
other include, a relative path is not relative to the include file, but rather relative to the root source file
that contains the first include.

In AVRASM2 the lexically first executable code generated will also be the first code that executes after
power up or reset of the microcontroller.

AVRASM2 does not pose any limitations on include files. AVRASM2 leaves it completely to the pro-
grammer what to put in included files. The included files are just literally inserted at the point of inclu-
sion. Thus, the programmer has full freedom how to structure his source files.

One way to find reasonable include files is to group all source code belonging to the same object in
one include file. Finding appropriate objects to implement for your problem at hand in assembler is not
different than for other programming languages. Hardware units can be considered objects too. For
example, I group all code belonging to UART handling in one source include file, all code for TWI
handling in another. The idea being of course, to re-use these "objects" in various projects that need
UART or TWI support.

To check if your choice of objects is reasonable, you might want to check if the reduction of complexity
is effective. As an indication you might check whether the different files which include each other are
roughly of balanced size, if size is a good enough approximation of complexity. To use the analogy of
a tree, branches should be of similar size, such that the tree looks well formed.

Structuring the source code as a tree is a necessity in AVRASM2, because there are no other means,
as there is no linking step. It is less obvious, but an environment which uses linking is also working in a
tree-like manner, as code which is added in the linking step might require other code to be included as

 5

well (usually from code libraries) which in turn can lead to additional code needing to be added and so
on.

Declaration Type Code versus Definition Type Code

One key consideration when using any programming language is, which language constructs actually
produce executable code (definitions) and which are "helper" constructs (declarations). With AVR

microcontrollers, executable code means code that gets stored in program flash memory (.cseg) or

constants that get stored in the program flash memory (.cseg) or data in the EEPROM flash memory

(.eseg). Language constructs which relate to RAM (.dseg) are a special case. They do not generate

code but rather reserve storage space. But I still call them definitions.

The key difference between using assembler and any high-level language is that the programmer has
ultimate control what code gets generated. Hence the distinction between definitions and declarations
is very important but not straight forward:

 Assembler "directives" declare things, for example symbolic names for constants. The directives

.db, .dw, .dd and .dw are exceptions as they do generate code. The directives .byte and

.org are special cases that do not generate code but rather reserve storage space

 Assembler "instructions" stand for processor instructions that get assembled to executable ma-
chine code and hence define the program flow. An exception to this are instructions that appear

within a macro declaration, that is between the .macro and .endm directives. These instructions

are being stored temporarily by the assembler. Code will only be generated by a macro invocation.
You could think of macro declarations like small internal include files, that the assembler stores in
RAM of the development PC. At macro invocation, the assembler inserts the code fragment one-

to-one, similar to an .include.

Well, one-to-one is not entirely correct, because you can modify the generated code at macro
invocation time using macro arguments.
Macro calls are to be written syntactically like processor instructions.

To further structure include files, I am using a paradigm that is commonly also used with languages
like C. I distinguish between include files which do not generate any code when inserted using

.include , but just contain declarations. My convention is to give these include files the extension

.inc. By contrast I use the extension .asm for include files which contain definitions and hence

generate code.

Lexical Order of Include Files

Lexical order is the order in which the assembler "sees" the source code, considering that all the in-
cludes are inserted at the respective places such that the source code can be seen as one long string
of statements.

The two-pass action of the assembler leaves considerable freedom as to where put what in the main
source file and in include files. This of course raises the question of a "reasonable" order of the source
code.

I chose to not rely on the two-pass feature too much, rather I adopt techniques usually seen in C
source code. There, C compilers pose stricter requirements, because most C compilers are one pass:

 Any declarations that are used by the including part of the source code shall be included before
they are lexically referred to. In other words: include files that contain declarations are included at
the top of the including source file. To flag that a file contains only declarations, I give it the file ex-

tension .inc. This corresponds to .h files in C.

 Include files that contain definitions i.e. which generate code, I put in files with extension .asm. I

include those at the bottom of the including source file. These files are in effect replacing the miss-
ing linking functionality of AVRASM2.

Example how I thus modularise and re-use UART code:

 …

 .include "trUARTS.inc"

 …

 rjmp RESET ; Interrupt vectors follow

 .org URXC0addr ; USART0 receive complete

 6

 rjmp trUARTrxInterrupt0

 .org UDRE0addr ; USART0 transmitter register empty

 rjmp trUARTtxInterrupt0

 …

 .set TRUART_RX_BUF_SIZE0 = 256 ; default in trUARTS.inc is 16

 MtrUARTinit 0, BAUD_MIDI

 …

 ;; send a byte

 rcall trUARTtx0

 …

 …

;;; lowest level UART access; this also includes the interrupt handlers

 .include "trUARTS.asm"

The symbol TRUART_RX_BUF_SIZE0 is declared in trUARTS.inc and set to default value of 16. The in-

cluding code overrides this to 256 to have a larger UART receive buffer. Based on this symbol code in
trUARTS.asm will reserve RAM (.dseg) of 256 bytes to hold that receive buffer.

The macro MtrUARTinit is declared in the file trUARTS.inc. There is no function trUARTinit be-

cause with most projects, hardware initialisation is done lexically only once. Hence a function would be

just more overhead and add no further value. However, trUARTtx0 is a function defined in

trUARTS.asm. There is a corresponding macro defined in trUARTS.inc. Below I will explain the rea-

sons to do so. Interrupt handlers like trUARTrxInterrupt0 are defined in trUARTS.asm .

Units of Functionality

Traditionally, the smallest functional unit in programming are functions, sub-routines or method
invocations.

Assembler offers these as well, albeit with more work needed by the programmer. Assembler macros
provide the programmer with another feature usually not available in high level languages (well, the C
language macros of the C-pre-processor are not as powerful as their assembler cousins).

Assembler macros can be used to "inline" code. The programmer himself decides.

In high level languages, the compiler decides which functions to inline. The programmer may be able
to influence this to a certain degree, for example using compiler options.

I will describe below a way how to implement the choice between function and inline code using
AVRASM2 efficiently.

6. It is All About Symbols

Symbols are a core assembler concept. In AVRASM2 symbols always stand for numbers. If you want
to give strings a symbolic name, you have to use the C-style pre-processor. Symbols can stand for

any constant numbers and also for addresses in program memory (.cseg), in EEPROM (.eseg) or in

RAM (.dseg).

Labels are special symbols, which always stand for memory addresses. Syntactically they are the first
item in a source code line and are terminated with a colon. A label which stands for an address in pro-

gram memory (.cseg) denotes either a jump target or the start address of a function or an interrupt

handler. Labels which stand for addresses in EEPROM or RAM are used for storage operations. By
using labels, there is never a need to use absolute memory addresses.

As said above labels are also symbols. AVRASM2 does do some book-keeping how labels and sym-
bols have been declared, as we can see by inspecting the "map" file that AVRASM2 optionally creates

(default file extension: .map). But there are no restrictions whatsoever how labels and symbols are

used and if you confuse them, there are no assembler warnings.

Hence, I have adopted the convention to use all upper-case letters and underscores for symbols that
represent constants. Symbols that are mixed case and start with lower case stand for addresses. For
constants I follow an additional convention to show the purpose of the constant by appending a suffix:

XYZ_OFFS Offset, e.g. byte offset of an element of a structure from the start of the structure

XYZ_BITNO Bit number, from 0-7

 7

XYZ_MASK Bit mask, e.g. 0x0F

XYZ_LEN Length, e.g. of an array or a structure

XYZ_SIZE same as LEN

XYZ_NUM Number, e.g. number of array elements

XYZ_END Index of the last array element = highest array index i.e. XYZ_END = XYZ_LEN -1,
because the index starts at 0

However, the suffixes do not mean anything regards the data type. In AVRASM2 all symbols represent
64-bit signed integers.

Scope of Names

A key characteristic of AVRASM2 is the direct assembly from source code to executable. Each project
consists of only one "assembly unit", which is the root source file and the tree of all included files. The
assembler sees all this as one long string of statements.

This has the consequence that all symbols are global. To avoid name clashes, you must use some
systematics to keep symbol names unique. This has to be achieved using name conventions too. To
avoid name clashes, I use the prefix technique. Each symbol defined is prefixed with a short character
sequence which is related to the file name of the include file in which it is declared. With this you also
avoid clashes with the vast number of symbols for hardware addresses and bit numbers, which are
declared in the official include files from Microchip, which are specific for the microcontroller at hand.

For example, I got the files trUARTS.inc and trUARTS.asm containing code to deal with UARTs. There

are for example the symbols trUARTrxInterrupt0 - which is the entry point to the receiver interrupt

handler - and TRUART_RX_BUF_SIZE0 which sets the receiver FIFO buffer size.

There are many coding conventions and even more debates about which are "better". It is just im-
portant to decide for one of them and then stick to it.

Compare this with using avr-as which requires a separate linking step. With avr-as you can divide
each project into different objects (units, linking objects), which are assembled separately and linked
together finally. Each assembly unit has a separate symbol name space. Hence you can choose if a
symbol shall only be known in this assembly unit or shall be known globally. The linker only knows of
global symbols and he can use those to resolve references. The linker does not know of local
symbols, unless they are deliberately given to the linker to be used later by a debugger.

Name Spaces

Assemblers are using few namespaces compared to high level languages. In AVRASM2 there are the

following classes of symbols and names

1. Symbols declared using .equ or .set

2. Symbolic names for processor registers, declared using .def

3. Macro names, declared using .macro

4. CSEG Labels
5. DSEG Labels
6. ESEG Labels.
7. CSEG labels in a macro declaration
8. DSEG labels in a macro declaration
9. ESEG labels in a macro declaration

As it turns out, for cases 1. to 6. there is only one, global name space per project. For example, this
has the consequence that a macro cannot have the same name as a label or symbol. For the cases 7.
to 9. there is one name space per macro invocation. All assemblers offer a way to create labels that
are local to a macro. Some assemblers require a special syntax for a label to be local, like e.g. avr-as.

 8

In AVRASM2 all labels defined in a macro are local. Because there is separate label namespace per
macro invocation, labels do not clash

 when the same macro gets invoked multiple times

 when other macros use the same labels.

Below I will discuss how to use local symbols and by doing so also mitigate the negative conse-
quences from the fact that there is only one assembly unit.

Note that you can define a symbol in a macro that can be used like a global label by using the syntax

 .equ myGlobalLabel = PC

This looks useless at first sight because the assembler will issue an error code when the macro is in-

voked a second time. But if you construct "myGlobalLabel" dynamically using a macro parameter,

then you can use that construct to create control structures, for example something similar to the
switch statement in C. You could find more detail about this and source code under

 http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

Because there is only one global name space - except for macros - I use further conventions to avoid
clashes. All my processor register names start with a capital "R", all my macro names start with a capi-
tal "M", except for macros, which deliberately look like processor instructions; please see the example

"ldiw" below. The capitalisation is just meant to increase readability, because by default AVRASM2

does not distinguish case.

Labels for Control Structures

Contrary to high level languages, you always need a lot of labels for loops and jump targets. Because
labels are local to macros, it is easy to come up with unique names there.

Therefor I always use the same consistent label names for loops. My loop label names do not explain
what the loop does. For this I use comments. Rather the label names mark the beginnings and
endings of loops.

Local labels can be short because they need only be unique within a macro. I use the "t" for the top of
a loop, "b" for the bottom and "c" for any "continue" like branch target. I append Arabic numerals if
there are multiple loops in the same macro.

Example:
 ...

 clr r25 ; 0 bytes received yet

 ;; algorithm to make sure I store neither the checksum nor the F7 byte

 ld r23, z+ ; get first (previous) byte

 rjmp b1

t1: st x+, r23 ; store previous (first) byte

 inc r25 ; byte counter

 breq error ; maximum 256 bytes

 mov r23, r22 ; the next (second) becomes the previous (first)

b1: ld r22, z+ ; get second (next) byte

 cpi r22, 0xF7 ; end?

 brne t1

 ...

 rjmp exit

error:

 ...

exit:

Quite often I also use an exit and error label in a macro. I put exit always at the macro bottom

Above example also shows the practice to first jump to the bottom of a loop, if checking a loop condi-
tion is the first thing that needs to be done. This is more efficient then checking the loop condition at
the top of the loop, because otherwise the bottom of the loop would need to contain an unconditional
jump to the loop top which is overhead and is usually more often executed than the unconditional jump
to the bottom which occurs only once.

http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

 9

7. Implementing Functions and Interrupt Handlers

How to Use Macros to Trade Speed for Size

Another important feature of macros is that they provide the feature of "inline" code. The macro code
is inserted at the point where the macro is called (invoked). The invocation has the effect that the as-
sembler inserts the code that has been put in the macro body at macro declaration time. This is hap-
pening at development (assembly time) and not at run time, as the term "invocation" might suggest.
This has a speed advantage over function calls, because the overhead of call/return and related ma-
nipulation of the stack is not needed. The disadvantage is of course, that code size is growing with
each macro invocation, whereas code size is only growing marginally with each function call.

In my AVR projects I decided to implement almost all functions as macros. This allows me to decide
later if I want inline code or a function.

For this I put the body of the function in a macro, omitting the ret instruction. If I need the function, I

call the macro followed by a ret and preceded by a label that stands for the function entry point.

Example:

 .macro MtestFunction

 .ldi r24, 123

t:

 ...

 cp r24, r25

 breq t

 ...

exit:

 .endm ; MtestFunction

 ...

 rcall testFunction ; function call

 ...

testFunction: ; function definition

 MtestFunction ; with body delivered by macro invocation

 ret

This technique does not have any disadvantage and I get in addition the advantage of local labels in
the function body as I described above.

Note that the construction of functions that way still leaves the possibility to call the macro elsewhere
to get an in-lined version if the speed advantage is required and justifies the longer code.
 ...

 MtestFunction ; macro invocation = inlining

 ...

I put function definitions at the end of the source code or in a .asm include file, if the function(s) is(are)

part of a module, that can be re-used. As a convention for the macro name, I take the function name

and prefix it with the capital letter "M" to correlate function and macro. I start all macro names with "M"

to be able to quickly identify them and to avoid clashes with valid processor instructions, unless the

macro shall have the look and feel of a processor instruction; for that please see macro "ldiw" below.

If, however, I find that a function is lexically invoked (called) only once, I omit the function definition
and just put a macro invocation instead of the function call.

As a consequence of this construct, I follow in my macros all calling conventions and register usage
conventions applicable to functions.

Using Macros with Include Files

I combine macros with the systematics of structuring and modularising the code using include files.
The macro that constitutes the function body will go into .inc files. The function definition will go in a

related .asm file.

 10

I apply the same systematics also to interrupt handlers, with the following differences:

 Interrupt handler definitions end with reti instead of ret

 Macros which make up the interrupt handler bodies are declared in .asm files - the same that con-

tains the interrupt handler definition - rather than in .inc files, because it does not make sense to

inline interrupt handlers.

Limiting the Scope of Functions and Variables

Functions Local to a Macro

Functions local to a macro can be constructed like this:

 .macro Mtest

 ldi R24, 123

 ...

 rcall myPrivateFunc1

 ...

 rcall myPrivateFunc2

 ...

 rjmp exit

myPrivateFunc1:

 clr r24

 ...

 ret

myPrivateFunc2:

 ldi r24,789

 ...

 ret

exit:

 .endm ; Mtest

 Mtest

Labels myPrivateFunc1 and myPrivateFunc2 are only defined in the separate name space of the

macro Mtest. Hence different functions of the same name could exist elsewhere without a name

clash.

Caveat: also in nested macros, that are invoked in such macros like Mtest, labels like

myPrivateFunc1 are not known.

Variables Local to a Macro

If you want to extend the notion of local functions to local variables (which you would call "static" in C),

AVRASM2 puts a hurdle:

 .macro Mtest

 ...

 .dseg

myPrivateVar:

 .byte 1

 .cseg

 sts myPrivateVar, r24

 .endm ; Mtest

 Mtest

 11

AVRASM2 issues the error message: "error: .byte directive illegal in macro definition".

Variables in RAM which are private and local to a macro do not seem to be possible. However, they
are possible if your use the following construct:

 .macro MtestNew

 ...

 .dseg

myPrivateVar:

 .org myPrivateVar +1

 .cseg

 sts myPrivateVar, r24

 .endm ; MtestNew

 MtestNew

This is perfectly valid, because .byte also advances the internal .org pointer by the given number of

bytes.

The construct does have a small disadvantage: AVRASM2 is book-keeping how many bytes a project
is using and prints this at the end as a small table with "Begin", "End", "Code" and "Data" columns. For

the Data column, the assembler just adds-up all .byte statements. This is documented in the listing

file:

RESOURCE USE INFORMATION

.dseg memory usage only counts static data declared with .byte

Hence you need to calculate the used RAM yourself using Begin and End. I have written a small
macro that you put at the program end and that will raise an error if you used too much .dseg-

memory. Please see under

 http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

Also, local variables in EEPROM can be created with a bit of care, because
 .macro Mtest

 ...

 .eseg

myPrivateVar: .db 123

 .endm ; Mtest

yields the cryptic error message:
AVRASM: AVR macro assembler 2.2.6 (build 63 Apr 26 2016 14:42:08)

Copyright (C) 1995-2016 ATMEL Corporation

===> FATAL ERROR: Internal: malformed directive: myPrivateVar: .db

Assembly failed, 1 errors, 0 warnings

When you put the label and .db on different lines, all is fine
 .macro Mtest

 ...

 .eseg

myPrivateVar:

 .db 123

 .endm ; Mtest

8. When to Use the C-style Pre-Processor?

AVRASM2 features in addition a C-style pre-processor. However, this does not seem to be a separate
processing pass before the two assembly steps. Rather the pre-processor directives seem to be exe-
cuted together with the first assembly pass.

Some C-pre-processor directives seem to be redundant to their older dot-style cousins of the assem-

bler. For example, Microchip documents that #include is functionally equivalent to .include .

http://web222.webclient5.de/doc/swdev/avrasm/utlmcr/

 12

Pre-processor #define seems to be redundant to assembler .equ or .set directives. The differences

are:

 If you need to set a symbol from the assembler command line, you have to use a pre-processor
symbol. Assembler symbols cannot be set from the command line.

It is confusing but the simple C-pre-processor #define - which can stand for strings or numbers

and do not take arguments - are also called "macros" even though they much rather feel like
symbols.

Concerning operators, functions and expressions:

 The assembler can calculate with assembler symbols and constants. This however is limited to
arithmetic and logic operations and is done with 64-bit accuracy.

 AVRASM2 symbols cannot stand for strings and there are no string functions, except for

strlen() . The argument for strlen() has to be either a string literal, for example "abc" - which

does not look very useful - or an assembler macro parameter - which seems a bit more useful, or
a C-pre-processor macro, which might be useful too.

 The C-pre-processor cannot calculate with symbols or constants even though if often looks like

this (it is the assembler who does it or the C-compiler). The only exception is #if where the pre-

processor does evaluate the expression. On the other hand, the pre-processor does have some
string functions:

 The pre-processor string functions are limited to concatenation, stringification to a string literal and
pattern matching. But you can do amazing things with this limited set. Unfortunately, the
AVRASM2 pre-processor does not always work as expected from a standard C pre-processor.
The example code in Appendix 1 highlights this.

The limitations in the string functions and the related pattern matching has the consequence that more
advanced uses of the pre-processor do not work, like X-Macros https://en.wikipedia.org/wiki/X_Macro
or to emulate arithmetics.

Pre-processor macro functionality partly overlaps with assembler .macro functionality. For example

 .macro arguments can be numeric, symbols or literals or string literals (using " as delimiter)

 pre-processor macro arguments can also be numeric, symbols or literals or string literals (using "
as delimiter)

 Assembler macro arguments can be concatenated with one another or with literals. The literals
cannot be numbers however (the reason for this is unclear)

 Pre-processor macro arguments can be concatenated as well. This is what the concatenation op-

erator ## is meant for. The rules for this are arcane but are well documented. Alas AVRASM2 is

deviating here as was mentioned earlier.

Quite often it is a matter of taste which of the two macro constructs to use. I usually try to get as far as
possible using assembler directives and use the C-pre-processor only exceptionally, for example to
avoid including the same code more than once. For example, in the file trUARTS.inc:

;;; file trUARTS.inc

;;;

#ifndef _TRUARTS_INC_

#define _TRUARTS_INC_

…

#endif /* _TRUARTS_INC_ */

;;; ***** END OF FILE **

This technique is also often used with C and especially with C library functionality. The same effect

could be achieved using assembler directives. But then symbols like _TR_UARTS_INC_ would appear in

the assembler symbol table and in the map file which I want to avoid. Hence, I prefer the C-pre-pro-
cessor variant here.

https://en.wikipedia.org/wiki/X_Macro

 13

9. Lexical Details

I try to stay as compatible to avr-as as much as possible. Hence, I write all assembler directives in
lower case, despite they appear in upper case in the official Microchip documentation. AVRASM2's
default setting is to ignore case.

Because of avr-as compatibility I write .endm rather than .endmacro .

I do comments and code indentation as suggested by AS mode of the EMACS editor.

10. Using Processor Resources in an Optimal Way

To Use or Not to Use the Stack

Push and pop instructions on AVR devices are relatively efficient, each taking two clock cycles only.
This is important as you often need to save processor registers on the stack. This is mandatory in
interrupt handlers and may occur in functions to preserve registers for the calling or called function
(see register usage conventions below).

If you do not have enough registers available, the standard procedure is to allocate short lived varia-
bles (so called "auto" variables in C) on the stack. For this you need to use a so-called frame pointer,
who is pointing to the allocated stack space. There is no alternative to this on AVR devices because
the stack pointer is not available as a standard register-pair, let alone for register relative addressing.
(Microchip calls this addressing "data indirect with displacement"). Two registers, more precisely regis-
ter-pairs, offer this functionality: y and z. AVR GCC is using y as frame pointer, which is plausible, be-
cause z is needed for other things that are not supported by y.

Storing and saving register contents on the stack using the y register as a frame pointer also takes two
clock cycles each with displacement. The displacement is limited to 0-63 bytes and is always positive.

However, allocating and de-allocating space on the stack adjusting the stack pointer is relatively
costly, because the stack pointer is implemented as I/O registers and not as a 16 bit or 24-bit proces-
sor register. The problem is that I/O registers can only be manipulated 8-bit at a time. To safely manip-
ulate the stack, which is usually 16 bits wide, requires interrupts being switched off during allocation
and de-allocation and then on again. This needs time and adds to code length.

Because of this I try to get away with using processor registers as much as possible rather than using
the stack for "auto variables".

If I need arrays, I check carefully if they really need to be dynamically created & destroyed (=auto vari-

ables in C speak) or whether I can afford to have them statically allocated in RAM i.e. in .dseg.

Speaking of interrupts and interrupt handlers: I always save registers on the stack. On AVR devices it
is possible to save registers in other registers that you reserve for this purpose. This has some small
speed advantage over push and pop instructions. This option is possible because on AVR devices
normally interrupts cannot be interrupted, unless you enable this explicitly in an interrupt handler.

How to Work with Structures and Arrays

Except for the most trivial cases you have to allocate structures and arrays in RAM.

Example for a structure in C-Syntax:

struct point {

 int x;

 int y;

};

which you might use like:

 struct point pt;

 pt.x = 456

 pt.y = 789

If the integer data type uses two bytes, you could write the following equivalent assembly code:

 14

 ;;define structure

 .dseg

ptxlo: .byte 1

ptxhi: .byte 1

ptylo: .byte 1

ptyhi: .byte 1

 .cseg

 ldi r24, low(456)

 ldi r25, high(456)

 sts ptxlo, r24

 sts ptxh, r25

 ldi r24, low(789)

 ldi r25, high(789)

 sts ptylo, r24

 sts ptylo, r25

Addressing using absolute addresses - like in the example using sts - is called by Microchip "Data

Direct". The code above is correct, but the fact that we are dealing with a structure is only apparent in
the variable names.

I find the following way to program clearer (the macros used are listed in Appendix 3):

 ;; declare structure offsets

 MtrSetOffset 0

 MtrNewOffsetSymbol POINT_X_OFFS, 2

 MtrNewOffsetSymbol POINT_Y_OFFS, 2

 ;; length of a structure instance

 .equ POINT_LEN = TR_OFFSET

 ;; allocate RAM = define structure

 .dseg

pt: .byte POINT_LEN

 .cseg

 ldi r24, low(456)

 ldi r25, high(456)

 sts pt+POINT_X_OFFS+0, r24

 sts pt+POINT_X_OFFS+1, r25

 ldi r24, low(789)

 ldi r25, high(789)

 sts pt+POINT_Y_OFFS+0, r24

 sts pt+POINT_Y_OFFS+1, r25

This way to code is especially clearer if you got multiple instances of the same structure, either one by
one or as an array. Using the naive coding above, you need one set of symbols per instance, whereas
in the coding using offsets, you only get one additional symbol per instance.

Just to be clear: the generated machine code is identical! The issue here is clarity and how easy it is to
manage and expand the source code.

If you need access by pointer, the coding using offsets is the only way to do it. And that highlights the
advantage of that notation because static and dynamic structures are dealt with using similar syntax:

 ldiw z, pt ; load pointer register with address

 ldi r24, low(456)

 ldi r25, high(456)

 std z+POINT_X_OFFS+0, r24

 std z+POINT_X_OFFS+1, r25

 ldi r24, low(789)

 ldi r25, high(789)

 std z+POINT_Y_OFFS+0, r24

 std z+POINT_Y_OFFS+1, r25

Access via a pointer register with offset - like in the example above using std - is called "Data Indirect

with Displacement" by Microchip.

If pt was an array, for example with PT_ARR_NUM elements

 .dseg

 15

ptArr: .byte PT_ARR_NUM*POINT_LEN

then, after an

 adiw z, POINT_LEN

the next array element could be accessed.

By the way: AVR processors access RAM only slightly slower than registers. Absolute addressing us-

ing lds or sts just needs two clock cycles. The indirect (pointer) access using ld or st or indirect with

offset using ldd or std or pre-decrement or post-increment are also only using two clock cycles.

Exception: st x, Rr and st x+, Rr only need one clock cycle instead of two.

This means that indirect access using pointer registers mostly does not bring a speed advantage over
absolute access. Hence, it is perfectly fine to use absolute addressing for static objects, like shown
above. However absolute addressing needs one more program memory word because of the address
word.

Structures as Parts of Static Objects

When you need to create several instances of a structure, you need to reserve RAM for each instance
and create a symbol that points to the start address of the structure. Instead of writing this down again

and again using .dseg, you could use the following macro to save writing:

 .macro MtrFIFONew

 ...

 .dseg ; switch to data section

dummy: ; dummy local symbol in dseg

 .equ DSEGtrFIFO@0 = dummy ; proper global symbol

 .org DSEGtrFIFO@0 + TRFIFO_BUF_OFFS + @1 ; allocate space

 .cseg ; switch back to code

 ... ; initialise instance

 .endm ; MtrFIFONew

The complete macro is listed in Appendix 4. As I wrote above, the label dummy creates a symbol that is

only known locally in the macro. As the name dummy implies, I do not use it as such. Rather the fol-

lowing .equ creates a global symbol with the same value, i.e. the same address. The FIFO methods

will later access the object using this symbol. The macro parameter @0 is providing for a unique name

for this object instance. Hence you need to provide a unique name literal in the macro invocation. The
instance is further identified using that literal:

 MtrFIFONew UARTrx, 256

In this example the second macro argument specifies the FIFO buffer length in bytes.

The FIFO access methods are also implemented as macros, for example:

 MtrFIFOgetNxtByte UARTrx

I intend to publish the full FIFO code under GPL.

Special Case EEPROM

EEPROM access on AVR devices is only possible using special I/O-registers. Access takes several
processor cycles and further more you might need to wait, if a write access is still pending.

Hence it might make sense to copy data from EEPROM to RAM.

What Registers to Use for What?

The standard AVR 8-bit microcontrollers, like an ATMega, have 32 registers. The assembler program-
mer has all freedom to use these as he wants.

 16

However, I decided to not re-invent the wheel, but to adopt the register usage conventions of the AVR
GNU-C compiler (AVR GCC). Please see the table in Appendix 2.

As a rule of thumb, I use registers r18 - r27 and r30, r31 for short lived purposes in functions (auto var-
iables in C-speak) as some of them are any way used for argument passing. Hence, I use r1 - r17 for
longer living variables (these would be "static" variables in C-speak). To help keeping track which reg-
isters are used for what, I use symbol definitions for registers a lot, using the assembler directives
.def and .undef. I use this especially for r1 - r17 to make sure I do not use a register twice acci-

dentally.

I use register names also for short lived variables to improve code readability. Then .def and .undef
come in pairs like so:

 .macro MtrUARTrxInterrupt

 .def scratch = r25

 .def data = r24

 push scratch

 LOAD scratch, SREG

 push scratch ; save status reg

 push data

 …

 LOAD data, UDR@0 ; get data as fast as possible to make

 ; room in the hardware buffer

 …

 …

 pop data

 pop scratch ; pop status from stack

 STORE SREG, scratch ; restore status register

 pop scratch

 .undef data

 .undef scratch

 .endm ; MtrUARTrxInterrupt

Register pairs r27:r26, r29:r28 and r31:30 support special addressing modes. For these pairs

AVRASM knows the short hand x, y and z. There are differences between x, y and z as to which
addressing modes are supported:

Data Indirect with Displacement (e.g. ldd, pointer access with 0-63 byte offset): y, z

Data Indirect with Pre-Decrement or Post-Increment (e.g. ld): x, y, z

Program Memory Constant Addressing (lpm, elpm, spm): z

Program Memory with Post-Increment (lpm z+, elpm z+): z

Indirect Program Addressing (ijmp, icall): z

In addition to x, y and z, also register pair r25:r24 supports 16-bit operations like e.g. adiw .

Syntactically, specifying the lower register is sufficient:
 movw z, r24

 movw z, r25:r24

are resulting in the same machine code (op code: 01fc). I recommend to explicitly specify the pair to
confirm the intention of the code to do a 16 bit operation.

Providing the higher register of a pair, like
 movw z, r25

yields an error message: "invalid register".

AVRASM does not support symbols for pairs, that is .def only works for single registers. You might

work around this by using .def for r24 and exploiting the fact that the lower register is sufficient to

specify in a 16 bit operation as shown above. You could .def a dummy symbol for r25, to signal that it

is also in use, but that might obscure the code, because the dummy symbol is never used.

If you tried this approach with r27:r26, r29:r28 or r31:30, you would get a warning, that a symbol

for r26, r28 or r30 is already defined. This happens because the symbols xl, xh, yl, yh and zl, zh are
not built into AVRASM, but are just declared using .def in the microcontroller specific include files.

 17

11. Program Flow and Concurrency

Concurrency Due to Hardware Devices

Modern microcontrollers offer a multitude of built-in hardware units that can run independently from
and in parallel to the main processor. For example: ADC, timer, UART, TWI, SPI and there can even
be a multiple of such units within a microcontroller. As they can work in parallel with the processor, we
need to cater for this concurrency. Such hardware devices usually offer a "polling" mode or an "inter-
rupt" mode to communicate with the main processor. Usually the interrupt mode is more efficient be-
cause no processor time is wasted in waiting. However, interrupt operation is more complex to design
and implement.

In other environments an operating system takes care of low level hardware functions and interrupts
and it intermediates with the user application. On small microcontrollers there might not be enough
space for an operating system to fit next to the application. Recent models however offer ample pro-
gram space such that an operating system environment may be viable. However, for AVR microcon-
trollers such as ATMegas, a well-known and de-facto standard operating system environment does
not seem to exist.

How Multiple Tasks Run Quasi Concurrently

Even simple microcontroller applications need to do multiple things that appear to the user to happen
in parallel. For example, polling a keyboard or other input devices, updating a display, etc. Again, man-
aging such might be handled by an operating system.

If you do not have an operating system, the simplest strategy is to just let the task run one after the
other in a collaborative way. That is, if a task has nothing to do, it let others run.

Example Program Flow

The structure I use follows the following principles:

 Keep interrupt service routines as short as possible

 Interrupts communicate with the main program by "producer-consumer" paradigm. Usually a FIFO
is a good vehicle for this

 The main program is divided in "tasks"

 The tasks are executed one-by-one in a "round robin" type fashion

 Each task first checks whether this task shall do something or not. If not, it gives back control im-
mediately to the main program which passes control to the next task round

 These checks shall be as short and as efficient as possible because they are overhead which is
reducing the available total computing power.

I usually have the following program layout:

 Reset and Interrupt vectors

 Interrupt handler(s)

 M...ISR1

 M...ISR2

 ...

 M...ISRN

Reset:

 Initialisation

 Main program

mainloop:

 M...Task1

 18

 M...Task2

 ...

 M...TaskM

 rjmp mainloop

Both interrupt handlers and tasks are written as macros. Interrupt handlers are then expanded follow-

ing a label signifying the entry point and a reti after the macro expansion, like this:

trUARTrxInterrupt0:

 MtrUARTrxInterrupt 0

 reti

trUARTrxInterrupt1:

 MtrUARTrxInterrupt 1

 reti

Above example shows two receive interrupt handlers for an ATMega that has two UARTs. The code
for the two UARTs is hence duplicated by using the same macro with a macro argument that specifies
the physical UART instance

Tasks are just in-lined rather than using functions, because they appear lexically only once and hence
functions would just add overhead. Example:

mainloop:

 MhandleTWIrxTask

 MhandleMIDIpRxTask

 MhandleTWItxTask

 MhandleKeyPadRxTask

 rjmp mainloop

The task macros have to check for work at the top and leave immediately (jump to the bottom of the
macro) if there is no work to do.

This scheme is simple and is sufficient as long as the round robin approach is fair enough for the ap-
plication at hand.

12. Tips and Tricks

How to Make Your Code Shorter and More Readable

Example macro:

 .macro ldiw

;;

;;; Macro to simplify loading a RAM address into x, y, or z

;;; macro arg1=@0: either x, y, z register to load with...

;;; macro arg2=@1: ...address

;;;

 ldi @0L, LOW(@1)

 ldi @0H, HIGH(@1)

 .endm ; ldiw

Example invocation:

 19

 ldiw z, bufferAddress

This is a typical macro that looks like a valid processor instruction. That is deliberate, because ldiw

might be part of the AVR processor instruction set. If Microchip decided one day to add such an
instruction to the instruction set, you would just remove the macro declaration.

Portability

It is always a good idea to use macros other people have written and tested. One example is the file

macros.inc from Atmel. The macros in macros.inc are described in Atmel Application Note AVR001:

Conditional Assembly and portability macros - doc2550.pdf.

The portability macros abstract I/O-access from how it is implemented in various AVR devices. Thus, it
helps writing code that runs on various AVR devices without change.

The only thing I added to macros.inc was
...

#ifndef _MACROS_INC_

#define _MACROS_INC_

...

#endif /* _MACROS_INC_ */

to avoid multiple inclusion.

13. An Example Development Environment under Windows

I develop under Windows 10 Pro 64-Bit and use AVRASM2 form the command line or from within
EMACS. For this I copied the relevant sub directory and "installed" it in a suitable subdirectory of
"Program Files" (or Program Files (x86) for 64-bit) plus a registry entry.

On another PC, I use AVR Studio 4.19 under Windows 10 Pro 32 bit with AVRISP MKII to program
AVR devices.

On both machines I use AVRASM2 version 2.2.6 (build 63 Apr 26 2016 14:42:08). I edit the source
code using GNU EMACS 25.1 with CUA-keys enabled and AS-mode switched on. I have customised
AS-mode a bit to fit my personal preferences.

I "installed" EMACS on OneDrive. Thus, I always have the same environment available on both PCs.

The EMACS serial-terminal-mode allows to show debug output which I output via an AVR UART
interface.

Please see more detail at

 http://web222.webclient5.de/doc/computing/windows/emacs/

 http://web222.webclient5.de/doc/swdev/emacs/

14. References

AVRASM2 Manual:
 http://ww1.microchip.com/downloads/en/DeviceDoc/40001917A.pdf

AVR Instruction Set Manual:
 http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf

15. Appendix 1 - Shortcomings of the C-Pre-Processor

The following example code shows that the C-style pre-processor, that is built into AVRASM2, does
not offer the same functionality like the C-pre-processor of avr-gcc (GNU CC), with respect to string
functions, pattern matching and symbol substitution:

/***/

/* This code has been run through AVR GCC {gcc version 4.8.1

(AVR_8_bit_GNU_Toolchain_3.4.5_1522)}

and AVRASM2 {AVR macro assembler 2.1.17 (build 435 Apr 10 2008 09:27:55)}

with the command lines

http://web222.webclient5.de/doc/computing/windows/emacs/
http://web222.webclient5.de/doc/swdev/emacs/
http://ww1.microchip.com/downloads/en/DeviceDoc/40001917A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf

 20

 > avr-gcc -E testpp.c

The -E options runs pre-processing only and outputs to stdout.

And

 > avrasm2 -m map.txt testpp.c

The map file map.txt shows the names of the two generated assembler symbols and

their value in hex

*/

/* Example 1

 Works as expected: GCC preprocessor and AVRASM2 preprocessing give the same result

*/

#define CRSYMBOL(sym, val) .equ sym = val

#define VALUE 123

 CRSYMBOL(symname, VALUE)

/* this expands to

 .equ symname = 123

as expected */

/* Example 2

 Works as expected in GCC preprocessor. However AVRASM2 does not expand VARPOSTFIX,

hence is /not/ compliant to C pre-processor standards.

*/

#define CAT_(a,b) a ## b

#define CAT(a,b) CAT_(a,b)

#define VARPOSTFIX 3

 .equ CAT(symname, VARPOSTFIX) = VALUE

/* The GCC preprocessor expands this to

 .equ symname3 = 123

as expected.

However AVRASM2 expands this to

 .equ symnameVARPOSTFIX = 123

which is /not/ what we expect */

/* the following nop is just there to keep AVRASM2 from complaining about an "empty

source file" */

 nop

/***/

16. Appendix 2 - Register Usage Conventions

The following table shows which registers are meant to be used for what. I took this over from the AVR
GCC documentation:

;;;;;;;;;;;;;;;;;;;; Register Usage ;;;;;;;;;;;;;;;

;;;

;;; I use any of registers r0 - r17 only via .def !

;;;

;;;Reg. Function Saving Return Value

;;;---

;;;R0 Temp Register Scratch

;;;R1 Always 0 Callee must clear

;;;R2 Callee must save

;;;R3 Callee must save

;;;R4 Callee must save

;;;R5 Callee must save

;;;R6 Callee must save

 21

;;;R7 Callee must save

;;;R8 Next Arg Callee must save

;;;R9 Next Arg Callee must save

;;;R10 Next Arg Callee must save

;;;R11 Next Arg Callee must save

;;;R12 Next Arg Callee must save

;;;R13 Next Arg Callee must save

;;;R14 Next Arg Callee must save

;;;R15 Next Arg Callee must save

;;;R16 Next Arg Callee must save

;;;R17 Next Arg Callee must save

;;;R18 Next Arg Scratch

;;;R19 Next Arg Scratch

;;;R20 Next Arg Scratch

;;;R21 Next Arg Scratch

;;;R22 Left most arg: Scratch Long byte0

;;; Long byte0

;;;R23 Left most arg: Scratch Long byte1

;;; Long byte1

;;;R24 Left most arg: Scratch Char

;;; Char Int low byte

;;; Int low byte Long byte2

;;; Long byte2

;;;R25 Left most arg: Scratch Char: 0 or sign ext.

;;; Int high byte Int high byte

;;; Long byte3 Long byte3

;;;R26 X: Scratch

;;;R27 X: Scratch

;;;R28 Y: Frame ptr. Callee must save

;;; Low Byte

;;;R29 Y: Frame ptr. Callee must save

;;; High Byte

;;;R30 Z: Scratch

;;;R31 Z: Scratch

17. Appendix 3 - Macros to Deal with Structures

AVRASM2 does not offer any directives to calculate structure member offsets. The following two
macros help with that:

;;

;;;

;;; Macros to generate symbols for structure member offsets

;;;

;;; Usage:

;;; MtrSetOffset is used to set the offset "counter",

;;; specifically to reset it

;;; MtrNewOffsetSymbol generates a new global symbol to be used as

;;; a structure member offset

;;;

 .macro MtrSetOffset

 .set TR_OFFSET = @0

 .endm ; MtrSetOffset

 .macro MtrNewOffsetSymbol

 .equ @0 = TR_OFFSET

 .set TR_OFFSET = TR_OFFSET + @1

 .endm ; MtrNewOffsetSymbol

18. Appendix 4 - Macro to Create a New FIFO Instance

Extract from file trFIFO.inc. The macro creates a new FIFO instance in RAM and initialises it:

;;; Create data structure offsets. These are the same for all FIFO instances

 22

 MtrSetOffset 0

 ;; structure offsets of the indices

 MtrNewOffsetSymbol TRFIFO_HEAD_OFFS, 1

 MtrNewOffsetSymbol TRFIFO_HDBT_OFFS, 1

 MtrNewOffsetSymbol TRFIFO_TAIL_OFFS, 1

 MtrNewOffsetSymbol TRFIFO_TLBT_OFFS, 1

 ;; also BUF_OFFS is the same for all FIFOs

 MtrNewOffsetSymbol TRFIFO_BUF_OFFS, 0

 .macro MtrFIFONew

;;

;;; Macro to create a new FIFO instance

;;; - the /instance/ FIFO symbols, i.e. static data specific to the instance

;;; - reserve space in dseg for instance

;;; - initialise instance data structure.

;;; The FIFO buffer proper in dseg is also instantiated but is /not/ cleared

;;;

;;; Macro arg1: Name of the FIFO instance

;;; Macro arg2: FIFO size in bytes (must be 2, 4, 8, 16, 32, 64, 128 or 256)

;;; Macro arg3: Packet size in bytes (must be a power of 2 and < FIFO size)

 ;; check the macro arguments

 .if @1 > 256 || @1 < 2

 .error "FIFO size must be <= 256 and >= 2"

 .endif

 .if exp2(log2(@1)) != @1

 .error "FIFO size must be a power of 2"

 .endif

 .if @2 >= @1 || @2 < 1

 .error "Packet size must be smaller than FIFO size and >= 1"

 .endif

 .if exp2(log2(@2)) != @2

 .error "Packet size must be a power of 2"

 .endif

 ;; static characteristics specific to this FIFO instance,

 ;; later accessed as immediate values

 .equ TRFIFO_SIZE_@0 = @1

 .equ TRFIFO_MASK_@0 = TRFIFO_SIZE_@0-1

 .equ TRFIFO_PACKET_LEN_@0 = @2

 .dseg ; switch to data section

dummy: ; dummy local symbol in dseg to capture the dot

 .equ DSEGtrFIFO@0 = dummy ; proper global symbol =

 ; address of the instance

 .org DSEGtrFIFO@0 + TRFIFO_BUF_OFFS + @1 ; allocate space for

 ; instance in dseg

 .cseg ; switch back to code

 ;; set generic variables to zero = FIFO is empty.

 ;; The FIFO buffer is /not/ cleared

 ;; TRFIFO_BUF_OFFS is the same as the length of the generic part

 MtrClrMem DSEGtrFIFO@0, TRFIFO_BUF_OFFS

 .endm ; MtrFIFONew

19. Appendix 5 - An Example Project: Software for a Synthesizer
HUI

I wrote this document after I built and programmed my own do-it-yourself human user interface (HUI)
hardware to control my do-it-yourself analogue music synthesizer. The HUI has the following features:

 Uses rotary encoders and push button switches for input and LEDs as output

 23

 Supports MIDI

 Uses a bunch of ATMega8 and ATMega644P

Please see http://web222.webclient5.de/prj/MusicEl/GTHL1/index.htm

* * *

http://web222.webclient5.de/prj/MusicEl/GTHL1/index.htm

