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Why learning Assembler?
Assembler  or other languages,  that  is  the question.  Why should I  learn another language,  if  I  already  
learned other programming languages? The best argument: while you live in France you are able to get  
through by speaking English, but you will never feel at home then, and life remains complicated. You can 
get through with this, but it is rather inappropriate. If things need a hurry, you should use the country's  
language.

Many people that are deeper into programming AVRs and use higher-level languages in their daily work  
recommend that beginners start with learning assembly language. The reason is that sometimes, namely 
in the following cases:

● if bugs have to be analyzed,

● if the program executes different than designed and expected,

● if the higher-level language doesn't support the use of certain hardware features,

● if time-critical in line routines require assembly language portions,

it  is  necessary  to  understand  assembly  language,  e.g.  to  understand  what  the  higher-level  language 
compiler  produced.  Without  understanding  assembly  language  you do not  have  a chance  to  proceed 
further in these cases.

Short and easy
Assembler instructions translate one by one to executed machine instructions. The processor needs only  
to  execute  what  you  want  it  to  do  and  what  is  necessary  to  perform  the  task.  No  extra  loops  and 
unnecessary features blow up the generated code. If your program storage is short and limited and you 
have to optimize your program to fit into memory, assembler is choice 1. Shorter programs are easier to 
debug, every step makes sense. 

Fast and quick
Because  only  necessary  code  steps  are  executed,  assembly  programs  are  as  fast  as  possible.  The 
duration of every step is known. Time critical  applications, like time measurements without a hardware 
timer, that should perform excellent, must be written in assembler. If you have more time and don't mind if  
your chip remains 99% in a wait state type of operation, you can choose any language you want. 

Assembler is easy to learn
It  is  not  true  that  assembly  language  is  more  complicated  or  not  as  easy  to  understand  than  other 
languages. Learning assembly language for whatever hardware type brings you to understand the basic 
concepts of any other assembly language dialects. Adding other dialects later is easy. As some features  
are hardware-dependent optimal code requires some familiarity with the hardware concept and the dialect. 
What makes assembler sometimes look complicated is that it requires an understanding of the controller's  
hardware functions. Consider this an advantage: by learning assembly language you simultaneously learn 
more about the hardware. Higher level languages often do not allow you to use special hardware features 
and so hide these functions.

The first assembly code does not look very attractive, with every 100 additional lines programmed it looks 
better. Perfect programs require some thousand lines of code of exercise, and optimization requires lots of 
work.  The first steps are hard in any language. After some weeks of programming you will laugh if you go  
through your first code. Some assembler instructions need some months of experience. 

AVRs are ideal for learning assembler
Assembler programs are a little bit silly: the chip executes anything you tell it to do, and does not ask you if  
you are sure overwriting this and that. All protection features must be programmed by you, the chip does  
exactly  anything  like it  is  told,  even if  it  doesn't  make any sense.  No window warns  you,  unless  you  
programmed it before.

To correct typing errors is as easy or complicated as in any other language. Basic design errors, the more 
tricky type of errors, are also as complicated to debug like in any other computer language. But: testing  
programs on ATMEL chips is very easy. If it does not do what you expect it to do, you can easily add some  
diagnostic lines to the code, reprogram the chip and test it. Bye, bye to you EPROM programmers, to the 
UV lamps used to erase your test program, to you pins that don't fit  into the socket after having them  
removed some dozen times.

Changes are now programmed fast, compiled in no time, and either simulated in the studio or checked in-
circuit. No pin is removed, and no UV lamp gives up just in the moment when you had your excellent idea  
about that bug. 
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Test it!
Be patient doing your first steps!  Most of the special features of other computer languages don't make any  
sense in assembler, so If you are familiar with another (high-level) language: forget it for the first time, it 
blocks you in learning. Behind every assembler language there is a certain hardware concept, so learn  
hardware AND software simultaneously.

The first five instructions are not easy to learn, after that your learning speed rises fast. After you had your  
first lines: grab the instruction set list and lay back in the bathtub, wondering what all the other instructions  
are like.

Serious warning: Don't try to program a mega-machine to start with. This does not make sense in any 
computer  language,  and  only  produces  frustration  and  hurdles.  Start  with  the  small  „Hello  world“-like 
examples, e.g. turning some LEDs on and off for a certain time, then explore the hardware features a bit 
deeper.

Recommendation: Comment your subroutines and store them in a special directory, if debugged: you will  
need them, or the ideas behind that, again in a short time.

If you need a good tool to learn assembler for AVRs: the simulator avr_sim, that can be downloaded here, 
is an easy to use software that executes self-made assembler software and displays the internal hardware 
as if you are yourself inside the controller.

Have success! 

http://www.avr-asm-tutorial.net/avr_sim/index_en.html
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Hardware for AVR-Assembler-Programming
Learning assembler requires some simple hardware equipment to test your programs, and see if it works in 
practice.

This section shows two easy schematics that enable you to home brew the required hardware and gives  
you the necessary hints on the required background. This hardware really is easy to build. I know nothing 
easier than that to test your first software steps. If you like to make more experiments, leave some more  
space for future extensions on your experimental board.

If you don't like the smell of soldering, you can buy a ready-to-use board, too. The available boards are  
characterized in this section below. 

The ISP-Interface of the AVR-processor family
Before going into practice, we have to learn a few essentials on the serial programming mode of the AVR 
family. No, you don't need three different voltages to program and read an AVR flash memory. No, you  
don't need another pre-programmed microprocessor to program the AVRs. No, you don't need 10 I/O lines 
to tell the chip what you like it to do. And you don't even have to remove the AVR from the socket on your  
your experimental board, before programming it. It's even easier than that. 

All this is done by a build-in interface in the AVR chips, that enable you to write and read the content of the  
program flash and the built-in-EEPROM. This interface works serially and needs only three signal lines: 

• SCK: A clock signal that shifts the bits to be written to the memory into an internal shift register, and  
that shifts out the bits to be read from another internal shift register,

• MOSI: The data signal that sends the bits to be written to the AVR,

• MISO: The data signal that receives the bits read from the AVR.

These three signal  pins  are internally  connected to the programming machine  only  if  you change the  
RESET (sometimes also called RST or restart) pin to zero. Otherwise, during normal operation of the AVR, 
these pins are programmable I/O lines like all the others.

If you like to use these pins for other purposes during normal operation, and for in-
system-programming,  you'll  have to  take  care,  that  these two purposes  do  not 
conflict. Usually you then decouple these by resistors or by use of a multiplexer. 
What is necessary in your case, depends from your use of the pins in the normal  
operation  mode.  You're  lucky,  if  you  can  use  them for  in-system-programming 
exclusively.

Not necessary, but recommendable for in-system-programming is, that you supply 
the programming hardware out of the supply voltage of your system. That makes it 
easy,  and requires  two additional  lines  between the programmer and the AVR 
board. GND is the common ground or negative pole of the supply voltage, VTG 
(target  voltage) the supply  voltage (usually  +5.0 volts).  This  adds up to 6 lines 
between  the  programmer  hardware  and  the  AVR  board.  The  resulting  ISP6 
connection, as defined by AMEL, is shown on the left. 

Standards always have alternative standards, that were used earlier. This is the 
technical  basis that constitutes the adapter  industry. In our case the alternative 
standard was designed as ISP10 and was used on the STK200 board, sometimes 
also called CANDA interface. It's still  a very widespread standard, and even the 
more recent STK500 board is equipped with it. ISP10 has an additional signal to 
drive a red LED. This LED signals that the programmer is doing his job. A good 
idea. Just connect the LED to a resistor and clamp it the positive supply voltage. 

Programmer for the PC-Parallel-Port
Now, heat up your soldering iron and build up your programmer. It is a quite easy schematic and works  
with standard parts from your well-sorted experiments box. 

Yes, that's all you need to program an AVR. The 25-pin plug goes into the parallel port of your PC, the 10-
pin-ISP goes to your AVR experimental board. If your box doesn't have a 74LS245, you can also use a 
74HC245 (with no hardware changes) or a 74LS244/74HC244 (by changing some pins and signals). If you 
use HC, don't forget to tie unused inputs either to GND or the supply voltage, otherwise the buffers might  
produce extra noise by capacitive switching. 
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The necessary program algorithm is done by the ISP software. Be aware that this parallel port interface is 
not supported by ATMEL's studio software any more. So, if you want to program your AVR directly from 
within the studio, use different programmers. The Internet provides several solutions.

If you already have a programming board, you will not need to build this programmer, because you'll find  
the ISP interface on some pins. Consult your handbook to locate these.

Experimental boards
You probably want to do your first programming steps with a self-made AVR board. Here are two versions 
offered:

● A very small one with an ATtiny13, or

● a more complicated one with an AT90S2313 or ATmega2313, including a serial RS232 interface.

Experimental board with an ATtiny13
This  is  a very small  board that  allows experiments  with  the ATtiny13's  internal  hardware.  The picture 
shows

● the ISP10 programming interface on the left, with a programming LED attached via a resistor of  
390 Ohms,

● the ATtiny13 with a pull-up of 10k on its RESET pin (pin 1),

● the supply part with a bridge rectifier, to be supplied with 9..15V from an AC or DC source, and a 
small 5V regulator.

The ATtiny13 requires no external XTAL or clock generator, because it works with its internal 9.6 Mcs/s 
RC generator and, by default, with a clock divider of 8 (clock frequency 1.2 Mcs/s).
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The  hardware  can  be  build  on  a 
small  board like the one shown in 
the picture. All pins of the tiny13 are 
accessible,  and  external  hardware 
components,  like  the  LED  shown, 
can be easily plugged in.

This  board  allows  the  use  of  the 
ATtn13's hardware components like 
I/O-ports,  timers,  AD  converters, 
etc.

Experimental board with an AT90S2313/ATmega2313
For test purposes, were more I/O-pins or a serial  communication interface is necessary, we can use a  
AT90S2313 or ATmega2313 on an experimental board. The schematic shows

• a small voltage supply for connection to an AC transformer and a voltage regulator 5V/1A,

• a XTAL clock generator (here with a 10 Mcs/s XTAL, all other frequencies below the maximum for  
the 2313 will also work),

• the necessary parts for a safe reset during supply voltage switching,

• the ISP-Programming-Interface (here with a ISP10PIN-connector). 

So that's what you need to start with. Connect other peripheral add-ons to the numerous free I/O pins of  
the 2313.

The easiest output device can be a LED, connected via a resistor to the positive supply voltage. With that,  
you can start writing your first assembler program switching the LED on and off.
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If you

● do not need the serial communication interface, just skip the hardware connected to pins 2/3 and 
14/16,

● if you do not need hardware handshake signals, skip the hardware on the pins 14/16 and connect  
RTS on the 9-pin-connector over a 2.2k resistor to +9V. 

If you use an ATmega2313 instead of an AT90S2313, the following changes are resulting:

● the external XTAL is not necessary, as the ATmega has an internal RC clock generator, so just 
skip all connections to pins 4 and 5,

● if you want to use the external XTAL instead of the build-in RC as clock source, you will have to 
program the fuses of the ATmega accordingly.

Ready-to-use commercial programming boards for the 
AVR-family
If you do not like homebrewed hardware, and if have some extra money left that you don't know what to do 
with, you can buy a commercial programming board. Depending from the amount of extra money you'd like 
to spend, you can select between more or less costly versions. For the amateur the following selection  
criteria should be looked at:

● price,

● PC  interface  (preferably  USB,  less  convenient  or  durable:  9-pin  RS232,  requiring  additional  
software: interfaces for the parallel port of the PC),

● support reliability for newer devices (updates are required from time to time, otherwise you sit on a 
nearly dead horse),

● hardware features (depends on your foreseeable requirements in the next five years).

The following section describes the three standard boards of ATMEL, the STK200, the STK500 and the 
Dragon. The selection is based on my own experiences and is not a recommendation.

STK200
The STK200 from ATMEL is a historic board. If you grab a used one you'll get

● a board with some sockets (for 8, 20, 28 and 40 pin devices),

● eight keys and LEDs, hard connected to port D and B,

● an LCD standard 14-pin interface,

● an option for attaching a 28-pin SRAM,

● a RS232 interface for communication,

● a cable interface for a PC parallel port on one side and a 10-pin-ISP on the other side.

HV programming is not supported.

The  board  cannot  be  programmed  from  within  the  Studio,  the  programming  software  is  no  longer  
maintained, and you must use external programs capable of driving the PC parallel port.

If someone offers you such a board, take it only for free and if you're used to operate software of the  
necessary kind.

STK500
Easy to get is the STK500 (e.g. from ATMEL). It has the following hardware: 

• Sockets for programming most of the AVR types (e.g. 14-pin devices or TQFP packages require  
additional hardware),

• serial  and  parallel  programming  in  normal  mode  or  with  high  voltage  (HV  programming  brings 
devices back to life even if their RESET pin has been fuse-programmed to be normal port input),

• ISP6PIN- and ISP10PIN-connection for external In-System-Programming,

• programmable oscillator frequency and supply voltages,

• plug-in switches and LEDs,

• a plugged RS232C-connector (UART),

• a serial Flash-EEPROM (only older boards have this),

• access to all port pins via 10-pin connectors.

A major disadvantage of the board is that, before programming a device, several connections have to be  
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made manually with the delivered cables.

The board is connected to the PC using a serial port (COMx). If your laptop doesn't have a serial interface,  
you can use one of the common USB-to-Serial-Interface cables with a software driver. In that case the 
driver must be adjusted to use between COM1 and COM8 and a baud rate of 115k to be automatically 
detected by the Studio software.

Programming is performed and controlled by recent versions of AVR studio, which is available for free from 
ATMEL's web page after registration. Updates of the device list and programming algorithm are provided 
with  the  Studio  versions,  so the support  for  newer  devices  is  more  likely  than with  other  boards  and 
programming software.

Experiments can start with the also supplied AVR (older versions: AT90S8515, newer boards versions 
include different types).  This covers all hardware requirements that the beginner might have.

AVR Dragon
The AVR dragon is a very small board. It has an USB interface, which also supplies the board and the 6-
pin-ISP interface.  The 6-pin-ISP-Interface is  accompanied  by a 20-pin HV programming interface.  The 
board is prepared for adding some sockets on board, but doesn't have sockets for target devices and other 
hardware on board.

The dragon is supported by the Studio software and is a updated automatically.

Its price and design  makes it  a nice gift  for an AVR amateur.  The box fits nicely  in  a row with  other  
precious and carefully designed boxes.
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Tools for AVR assembly programming
Four basic programs are necessary for assembly programming. These tools are: 

• the editor,

• the assembler program,

• the chip programing interface, and

• the simulator.

Two different basic routes are possible:

1. anything necessary in one package,

2. each task is performed with a specific program, the results are stored as specific files.

Usually  route  #1  is  chosen.  But  because  this  is  a  tutorial,  and  you are  to  understand the  underlying 
mechanism first, we start with the description of route #2 first.

From a text file to instruction words in the flash memory

The editor
Assembler programs are written with an editor. The editor just has to be able to create and edit ASCII text  
files. So, basically, any simple editor does it.

Some features of the editor can have positive effects:

● Errors, that the assembler later detects, are reported along with the line number in the text file. Line 
numbers are also a powerful invention of the computer-age when it comes to discussions on your  
code with someone else. So your editor should be able to display the line number. Unfortunately  
nearly all editors, that a mighty software company provides as part of its operating systems, are 
missing  that  feature.  Probably  Widows  2019  re-invents  that  feature,  and  sells  better  among 
assembler freaks.

● Typing errors are largely reduced, if those errors are marked with colors. It is a nice feature of an 
editor to highlight the components of a line in different colors. More or less intelligent recognition of  
errors ease typing. But this is a feature that I don't really miss.

● If your editor allows the selection of fonts, chose a font with fixed spacing, like Courier. Headers 
look nicer with that.

● Your  editor  should  be  capable  of  recognizing  line  ends  with  any  combination  of  characters 
(carriage returns, line feeds, both) without producing unacceptable screens. Another item on the 
wishlist for Widows 2013.

If you prefer shooting with cannons to kill  sparrows, you can use a mighty word processing software to 
write assembler programs. It might look nicer, with large bold headings, gray comments, red warnings,  
changes marked, and reminders on To-Do's in extra bubble fields. Some disadvantages here: you have to 
convert your text to plain text at the end, losing all your nice design work, and your resulting textfile should  
not  have a single control  byte left.  Otherwise this  single byte will  cause an error message, when you 
assemble the text. And remember: Line numbers here are only correct on page one of your source code.

So, whatever text program you chose, 
it's  up to you.  The following examples 
are  written  in  wavrasm,  an  editor 
provided by ATMEL in earlier days.

In the plain  editor  field  we type in our 
directives and assembly instructions. It 
is highly recommended that lines come 
together with some comments (starting 
with  ;).   Later  understanding  of  what 
we've  planned  here  will  be  helpful  in 
later debugging.

Now store the program text, named to 
something.asm  into  a  dedicated 
directory,  using  the  file  menu.  The 
assembly program is complete now.

If  you'd  like  to  see  what  syntax-
highlighting means, I have a snapshot of such an AVR editor here.

The editor recognizes instructions automatically and uses different colors (syntax highlighting) to signal 
user constants and typing errors in those instructions (in black). Storing the code in an .asm file provides 
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nearly the same text file, colors 
are not stored in the file. 

Don't try to find this editor or its 
author; the editor is history and 
no longer maintained.

 

Structuring assembler 
code

This page shows the basic 
structure of an assembler 
program. These structures are 
typical for AVR assembler. 

This text discusses 
• comments  , 
• header informations  , 
• code at program start   and 
• the general structure of programs. 

Comments
The most helpful things in assembler programs are comments. If you need to understand older code that 
you wrote, sometimes years after, you will be happy about having some or more hints what is going on in  
that line. If you like to keep your ideas secret, and to hide them against yourself and others: don't use 
comments. A comment starts with a semicolon. All that follows behind on the same line will be ignored by  
the compiler. If you need to write a comment over multiple lines, start each line with a semicolon. So each  
assembler program should start like that: 

;
; Click.asm, Program to switch a relais on and off each two seconds
; Written by G.Schmidt, last change: 7.10.2001
;

Put comments around all parts of the program, be it a complete subroutine or a table. Within the comment 
mention the special nature of the routine, pre-conditions necessary to call or run the routine. Also mention  
the results of the subroutine in case you later will have to find errors or to extend the routine later. Single  
line comments are defined by adding a semicolon behind the command on the line. Like this: 

   LDI R16,0x0A ; Here something is loaded
   MOV R17,R16 ; and copied somewhere else

Things to be written on top
Purpose and function of the program, the author, version information and other comments on top of the 
program  should  be  followed  by  the  processor  type  that  the  program  is  written  for,  and  by  relevant  
constants and by a list with the register names. The processor type is especially important. Programs do 
not run on other chip types without changes. The instructions are not completely understood by all types, 
each type has typical amounts of EEPROM and internal SRAM. All these special features are included in a 
header file that is named xxxxdef.inc, with xxxx being the chip type, e.g. 2313, tn2323, or m8515. These  
files are available by ATMEL. It is good style to include this file at the beginning of each program. This is  
done like that: 

.NOLIST ; Don't list the following in the list file

.INCLUDE "m8515def.inc" ; Import of the file

.LIST ; Switch list on again

The path, where this file can be found, is only necessary if you don't work with ATMEL's Studio. Of course 
you have to include the correct path to fit to your place where these files are located. During assembling,  
the output of a list file listing the results is switched on by default. Having listing ob might result in very long 
list file (*.lst) if you include the header file. The directive .NOLIST turns off this listing for a while, .LIST  
turns it on again. Let's have a short look at the header file. First these files define the processor type: 

.DEVICE ATMEGA8515 ; The target device type

The directive .DEVICE advises the assembler to check all instructions if these are available for that AVR 
type.  It  results  in  an error  message,  if  you  use code sequences  that  are  not  defined  for  this  type of  
processor. You don't need to define this within your program as this is already defined within the header 
file. The header file also defines the registers XH, XL, YH, YL, ZH and ZL. These are needed if you use the 
16-bit-pointers X, Y or Z to access the higher or lower byte of the pointer separately. All port locations are  

http://www.atmel.com/
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#struktur
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#start
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#kopf
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#comments
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also defined in the header file, so PORTB translates to a hex number where this port is located on the  
defined device. The port's names are defined with the same names that are used in the data sheets for the 
respective processor type. This also applies to single bits in the ports. Read access to port B, Bit 3, can be  
done using its bit name PINB3, as defined in the data sheet. In other words: if you forget to include the  
header file you will run into a lot of error messages during assembly. The resulting error messages are in 
some cases not necessarily related to the missing header file. Others things that should be on top of your 
programs are the register definitions you work with ,e. g.: 

.DEF mpr = R16 ; Define a new name for register R16

This has the advantage of having a complete list of registers, and to see which registers are still available  
and unused. Renaming registers avoids conflicts in the use of these registers and the names are easier to 
remember.  Further on we define the constants  on top of the source file,  especially  those that  have a 
relevant role in different parts of the program. Such a constant would, e. g., be the Xtal frequency that the 
program is adjusted for, if you use the serial interface on board. With 

.EQU fq = 4000000 ; XTal frequency definition

at the beginning of the source code you immediately see for which clock you wrote the program. Very  
much easier than searching for this information within 1482 lines of source code.

Things that should be done at program start
After you have done the header, the program code should start. At the beginning of the code the reset- and 
interrupt-vectors (their function see in the JUMP section) are placed. As these require relative jumps, we 
should place the respective interrupt service routines right behind. In case of ATmega types with larger 
flash memory JUMP instructions can be used here, so be careful here. There is some space left then for 
other subroutines, before we place the main program. The main program always starts with initialization of 
the stack pointer, setting registers to default values, and the init of the hardware components used. The 
following code is specific for the program.

Structuring of program code
The described standardized structure is included in a program written for Windows Operating Systems, 
which can be downloaded at http://www.avr-asm-download.de/avr_head.zip.

Unzip the executable file,  and simply run 
it.  It  shows  this:  Here  you  can  choose 
ATtiny by clicking on it, and then select 

ATtiny13 in  the  dropdown  field  AVR-
Type. 

http://www.avr-asm-download.de/avr_head.zip
../../../avr-asm-tutorial/html/avr_en/beginner/JUMP.html
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You are now asked to navigate to its 
respective  include-file  tn13def.inc. 
Show the program the way where the 
header file is located.
Here you can enter your desired multi 
purpose  register,  the  output  configu-
ration  on  ports  A and  B,  if  available, 
and if you want to use interrupts. 

Click  Update to fill  the window with 
your code frame. 

Click CopyToClipboard, if you want 
to  paste  this  code  into  your  code 
editor, or WriteToFile to write this to 
an assembler code file instead.

 If you don't know what it is for and what to do, press the Help button. 

This produces the following code: 

;
; ********************************************
; * [Add Project title here]                 *
; * [Add more info on software version here] *
; * (C)20xx by [Add Copyright Info here]     *
; ********************************************
;
; Included header file for target AVR type
.NOLIST
.INCLUDE "tn13def.inc" ; Header for ATTINY13
.LIST
;
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; ============================================
;   H A R D W A R E   I N F O R M A T I O N   
; ============================================
;
; [Add all hardware information here]
;
; ============================================
;      P O R T S   A N D   P I N S 
; ============================================
;
; [Add names for hardware ports and pins here]
; Format: .EQU Controlportout = PORTA
;         .EQU Controlportin = PINA
;         .EQU LedOutputPin = PORTA2
;
; ============================================
;    C O N S T A N T S   T O   C H A N G E 
; ============================================
;
; [Add all constants here that can be subject
;  to change by the user]
; Format: .EQU const = $ABCD
;
; ============================================
;  F I X + D E R I V E D   C O N S T A N T S 
; ============================================
;
; [Add all constants here that are not subject
;  to change or calculated from constants]
; Format: .EQU const = $ABCD
;
; ============================================
;   R E G I S T E R   D E F I N I T I O N S
; ============================================
;
; [Add all register names here, include info on
;  all used registers without specific names]
; Format: .DEF rmp = R16
.DEF rmp = R16 ; Multipurpose register
;
; ============================================
;       S R A M   D E F I N I T I O N S
; ============================================
;
.DSEG
.ORG  0X0060
; Format: Label: .BYTE N ; reserve N Bytes from Label:
;
; ============================================
;   R E S E T   A N D   I N T   V E C T O R S
; ============================================
;
.CSEG
.ORG $0000
        rjmp Main ; Reset vector
        reti ; Int vector 1
        reti ; Int vector 2
        reti ; Int vector 3
        reti ; Int vector 4
        reti ; Int vector 5
        reti ; Int vector 6
        reti ; Int vector 7
        reti ; Int vector 8
        reti ; Int vector 9
;
; ============================================
;     I N T E R R U P T   S E R V I C E S
; ============================================
;
; [Add all interrupt service routines here]
;
; ============================================
;     M A I N    P R O G R A M    I N I T
; ============================================
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;
Main:
; Init stack
        ldi rmp, LOW(RAMEND) ; Init LSB stack
        out SPL,rmp
; Init Port B
        ldi rmp,(1<<DDB2)|(1<<DDB1)|(1<<DDB0) ; Direction of Port B
        out DDRB,rmp
; [Add all other init routines here]
        ldi rmp,1<<SE ; enable sleep
        out MCUCR,rmp
        sei
;
; ============================================
;         P R O G R A M    L O O P
; ============================================
;
Loop:
        sleep ; go to sleep
        nop ; dummy for wake up
        rjmp loop ; go back to loop
;
; End of source code
;

The assembler
Now we have a text file, with blank ASCII characters. The next step is to translate this code to a machine-
oriented form well understood by the AVR chip. Doing this is called assembling, which means „put together  
the right instruction words“. The program that reads the text file and produces some kind of output files is  
called Assembler. In the easiest form this is a program for the instruction line that, when called, expects the 
address of the text file and some optional switches, and then starts assembling the instructions found in 
the text file.

If your editor allows calling external programs, this is an easy task. If not (another item on the wish list for  
the editor in Widows 2010), it is more convenient to write a short batch file (again using an editor). That  
batch file should have a line like this:

PathToAssembler\Assembler.exe -options PathToTextfile\Textfile.asm 

Klicking on the editor's external program 
caller  or  on  the  batch  file  starts  the 
command  line  assembler.  That  piece  of 
software reports the complete translation 
process  (in  the  smaller  window),  here 
with  no errors.  If  errors  occur these are 
notified,  along  with  their  type  and  line 
number. Assembling resulted in one word 
of  code  which  resulted  from  the  RJMP 
instruction that we used. Assembling our 
single  asm  text  file  now  has  produced 
four other files (not all apply here).

The  first  of  these  four  new  files, 
TEST.EEP, holds the content that should 
be  written  to  the  EEPROM of  the  AVR. 
This  is  not  very interesting  in  our  case, 
because  we  didn't  program any  content 
for  the  EEPROM.  The  assembler  has 
therefore  deleted  this  file  when  he 

completed the assembly run, because it is empty.

The second file, TEST.HEX, is more relevant 
because this  file  holds  the instructions  later 
programmed into the AVR chip. This file looks 
like this.

The  hex  numbers  are  written  in  a  special 
ASCII  form,  together  with  address 
informations  and a checksum for  each line. 
This  form  is  called  Intel-hex-format,  and  is 
very  old  and  stems  from the  early  world  of 
computing.  The  form is  well  understood  by 

the programing software.
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The  third  file,  TEST.OBJ,  will  be 
introduced later, this file is needed to 
simulate  an  AVR.  Its  format  is 
hexadecimal  and defined by ATMEL. 
Using  a  hex-editor  its  content  looks 
like this.  Attention:  This  file  format is 
not  compatible  with  the  programmer 

software, don't use this file to program the AVR (a very common error when starting). OBJ files are only  
produced by certain ATMEL assemblers, don't expect these files with other assemblers.

The  fourth  file,  TEST.LST,  is  a  text  file.  Display  its 
content with a simple editor. The following results.

The  program  with  all  its  addresses,  instructions  and 
error messages are displayed in a readable form. You 
will need that file in some cases to debug errors.

List files are generated only if the appropriate option is 
selected  on  the  command  line  options  and  if 
the .NOLIST directive doesn't suppress listing.

Programming the chips
To program our hex code, as coded in text form in the .HEX-file, to the AVR a programmer software is  
necessary.  This  software  reads  the  .HEX-file  and  transfers  its  content,  either  bit-by-bit  (serial  
programming) or byte-by-byte (parallel programming) to the AVR's flash memory. We start the programmer 
software and load the hex file that we just generated.

In  an  example  that  looks 
like  this.  Please  note:  the 
displayed  window  stems 
from  ISP.exe,  a  historic 
program no longer distribu-
ted by ATMEL. Other pro-
grammer  software  looks 
similar.

The software will  burn our 
code in the chip's program 
store. There are a number 
of preconditions necessary 
for  this  step  and  several 
reasons  possible,  if  this 
step  fails.  Consult  your 
programmer software help, 
if problems occur.

Programming  hardware  and  appropriate  software  alternatives  for  different  PC  operating  systems  are 
available on the Internet. As an example for programming over the PC's parallel or serial communication 
port, PonyProg2000 should be mentioned here.

Simulation in the studio
In some cases self-written assembly code, even assembled without errors, does not exactly do what it  
should do when burned into the chip. Testing the software on the chip could be complicated, esp. if you 
have a minimum hardware and no opportunity to display interim results or debugging signals. In these 
cases the Studio software package from ATMEL provides ideal opportunities for debugging. Testing the  
software or parts of it is possible, the program code could be tested step-by-step displaying results.

The pictures shown here are taken from Version 4 of the Studio, that is available for free on ATMEL's 
website. Older versions looks different, but do nearly the same. The Studio is a software that has all you 
need to develop, debug, simulate and burn your assembler programs into the AVR type of your choice.  
The studio is started and looks like this.
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The first dialog asks whether an existing project should be opened or a new project is to be started. In case 
of a newly installed Studio “New Project” is the correct answer. The Button “Next>>” brings you to the 
settings dialog of your new project.

Here you select “Atmel AVR Assembler” as your project type, give that project a name (here “test1”) and 
let the Studio crate an initial (empty) file for your source code, let it create a folder and select a location for  
that project, where you have write access to.

The button “Next>>” opens the platform and device selection dialog:
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As debug platform select either “AVR simulator” or “AVR simulator 2”. As Device select your AVR type,  
here an ATmega8 was selected.  If  your desired type is  grayed out,  select  another  simulator  platform. 
Close this window with the “Finish” button. Now a large window pops up, which has lots of different sub-
windows.

On the left, the project window allows you to manipulate and view all your project files. In the middle, the  
editor window, allows you to write your source code (try typing its content to your editor window, don't care 
about the colors – these are added by the editor – remember syntax-highlighting?). On the left bottom is a  
“Build” section, where all your error messages go to. On the right side is a strange I/O view and below a  
rather white field, we'll come to that later on.

All window portions can be made larger and smaller and even can be shifted around on the screen. Try  
mixing these windows! The next pictures show some differently looking windows, but they are all the same  
as here.

After typing the source code shown above to your source file in the editor completely, push the menu  
“Build” and its sub-menu “Build”. If you typed correctly, the following shows up in your “Build” window:
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Make sure, you read all window content once for the first time, because it gives you a lot more info besides  
the small green circle. All that should be fine, otherwise you typed errors into the code and the circle is red.

You can now push the menu item “Debug” and some windows change their content, size and position. If  
you also push the menu item “View”, “Toolbars” and “Processor” and shift around windows, it should look 
like this: 

The former editor window has 
a  yellow  arrow  now.  This 
arrow  points  to  the  next 
instruction  that  will  be 
executed (not really executed, 
but rather “simulated”).

The processor window shows 
the  current  program  counter 
value (yes, the program starts 
at  address  0),  the  stack 
pointer  (no  matter  what  that 
might be – wait for that later in 
the  course),  a  cycle  counter 
and a stop watch. If you push 
on  the  small  “+”  left  to  the 
word “Registers”,  the content 
of  the  32  registers  is 
displayed  (yes,  they  are  all 
empty  when  you  start  the 
processor simulation).

Now let  us proceed with  the 
first  instruction.  Menu  item 
“Debug”  and  “Step  into”  or 
simply F11 executes the first 
instruction.

The  instruction  “ldi  rmp,0b11111111” 
loads  the  binary  value  1111.1111  to 
register R16. An instruction we will learn 
more about later on in the course.

The  yellow  arrow  now  has  advanced 
one instruction down, is now at the OUT 
instruction.

In  the  processor  window,  the  program 
counter and the cycle counter are both 
at 1 now.

And  register  16,  down  the  list  of 
registers,  is  red now and shows 0xFF, 
which  is  hexadecimal  for  binary 
1111.1111.

To  learn  about  another  simulator 
window  just  advance  simulation  one 
step  further  to  execute  the  OUT 
instruction (e. g. by pushing the key F11.
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The instruction “Out DDRB,rmp” writes 0xFF to a port named DDRB. Now the action is on the I/O view  
window. If you push on PORTB and the small “+” left of it, this window displays the value 0xFF in the port  
DDRB in two different forms: as 0xFF in the upper window portion and as 8 black squares in the lower 
window section.

To make it even more black, we push F11 two times and write 0x55 to the port PORTB.

As expected,  the 
port  PORTB 
changes  its 
content  and  has 
four  black  and 
four  white 
squares now.

Another two F11, 
writing  0xAA  to 
PORTB, changes 
the  black  and 
white  squares  to 
the  opposite 
color.

All  what has  been 
expected, but what 
happened  to  port 
PINB?  We  didn't 
write  something  to 
PINB,  but  it  has 
the opposite colors 
than  PORTB,  just 
like  the  colors 
before in PORTB.

PINB  is  an  input 
port  for  external 
pins.  Because  the 
direction  ports  in 
DDRB  are  set  to 
be  outputs,  PINB 
follows  the  pin 
status  of  PORTB, 
just  one  cycle 

later. Nothing wrong here. If you like to check this, just press F11 several times and you see that this is  
correct.

That is our short trip through the simulator software world. The simulator is capable to much more, so it  
should be applied extensively in cases of design errors. Visit the different menu items, there is much more 
than can be shown here. In the mean time, instead of playing with the simulator, some basic things have to 
learned about assembler language, so put the Studio aside for a while.

What is a register?
Registers are special storages with 8 bits capacity and they look like this: 
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Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Note the numeration of these bits: the least significant bit starts with zero (mathematically: 20 = 1).

A register can either store numbers from 0 to 255 (positive number, no negative values), or numbers from -
128 to +127 (whole number with a sign bit,  located in bit  7),  or  a value representing an ASCII-coded  
character (e. g. 'A'), or just eight single bits that do not have something to do with each other (e. g. for eight  
single flags, used to signal eight different yes/no decisions).

The special character of registers, compared to other storage sites, is that 

• they are connected directly to the central processing unit called the accumulator,

• they can be used directly in assembler instructions, either as target register for the result or as read  
register for a calculation or transfer,

• operations with their content require only a single instruction word.

There are 32 registers in an AVR. They are originally named R0 to R31, but you can choose to name them 
to more meaningful ones using a so-called assembler directive. An example:

.DEF MyPreferredRegister = R16

Assembler directives always start with a dot. Instructions or labels do NEVER start with a dot. Note that  
assembler directives like this are only meaningful for the assembler but do not produce any code that is  
executable in the AVR target chip. The name “MyPreferredRegister” will not show up in the assembled hex  
code, and therefore this name cannot be derived from that hex code. 

Instead of using the register name R16 we can now use our own name “MyPreferredRegister”, if we want  
to use R16 within an instruction. So we write a little bit more text each time we use this register, but we 
have an association what might be the content of this register.

Using the instruction line

LDI MyPreferredRegister, 150

which means: load the number 150 immediately to the register R16, LoaD Immediate. This loads a fixed 
value or a constant to that register. Following the assembly, or translation of this code into binary or hex, 
the program storage written to the AVR chip looks like this:

000000 E906

This will show up in the listing, a file called *.lst produced by the assembler software, which is a simple text  
file. All numbers are in hex format: The first hex number is the address (000000), where the instruction is  
written to in the program flash memory of the AVR, the second is the instruction code (E906). E906 tells  
the processor three different things in one word, even if you don't see this directly:

● a basic load instruction code, that stands for LDI,

● the target register (R16) where the value 150 is to be written to,

● the value of the constant (150).

Don't be afraid: you don't have to remember this coding because the assembler knows how to translate all  
this to finally yield E906 and the AVR executes it. 

Within one instruction two different registers can play a role. The easiest instruction of this type is the copy  
instruction, MOV. The naming of this instruction MOV deserves a price for the most confusing definition,  
because the content of a register  cannot be moved (what would be left  in a register,  if  you MOVE its 
content  to somewhere else?).  It  should better  be named COPY, because it  copies the content  of one 
register to another register. Like this:

.DEF MyPreferredRegister = R16

.DEF AnotherRegister = R15
LDI MyPreferredRegister, 150
MOV AnotherRegister, MyPreferredRegister

The first two lines of this monster program are directives that define the new names of the registers R16 
and R15 for the assembler. Again, these lines do not produce any code for the AVR. The instruction lines  
with LDI and MOV produce code:

000000 E906
000001 2F01

The instruction write the value 150 into register R16 and copy its content to the target register R15. Very  
IMPORTANT NOTICE:

The first register is always the target register where the result is written to!

(This is unfortunately different from what one expects or from how we speak, think and write – left to right.  
It is a simple convention, probably inspired by some Asian languages where writing is from right to left.  
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That  was  once defined that  way to  confuse the beginners  learning  assembler.  That  is  why assembly 
language is that complicated.)

Different registers
The beginner might want to write the above instructions like this:

.DEF AnotherRegister = R15
LDI AnotherRegister, 150

And: you lost. Only the registers from R16 to R31 load a constant immediately with the LDI instruction, R0 
to R15 don't do that. This restriction is not very fine, but could not be avoided during construction of the 
instruction set for the AVRs. 

There is one exception from that rule: setting a register to Zero. This instruction 

CLR MyPreferredRegister

is valid for all registers.

Besides  the  LDI  instruction  you  will  find  this  register  class  restriction  with  the  following  additional  
instructions: 

• ANDI Rx,K ; Bit-And of register Rx with a constant value K,

• CBR Rx,M ; Clear all bits in register Rx that are set to one within the constant mask value M,

• CPI Rx,K ; Compare the content of the register Rx with a constant value K,

• SBCI Rx,K ; Subtract the constant K and the current  value of the carry flag from the content  of  
register Rx and store the result in register Rx,

• SBR Rx,M ; Set all bits in register Rx to one, that are one in the constant mask M,

• SER Rx ; Set all bits in register Rx to one (equal to LDI Rx,255),

• SUBI Rx,K ; Subtract the constant K from the content of register Rx and store the result in register  
Rx.

In all these instructions the register must be between R16 and R31! If you plan to use these instructions  
you should select one of these registers for that operation. It is shorter and easier to program. This is an  
additional reason why you should use the directive to define a register's name, because you can easier  
change the registers location later on, if required. 

Pointer-registers
A very special extra role is defined for the register pairs R27:R26, R29:R28 and R31:R32. The role is so  
important that these pairs have extra short names in AVR assembler: X, Y and Z. These short names are  
understood by the assembler. These pairs are 16-bit pointer registers, able to point to addresses with max. 
16 bit length, e. g. into SRAM locations (X, Y or Z) or into locations in program memory (Z).

Accessing memory locations with pointers
The lower byte of the 16-bit-address is located in the lower register, the higher byte in the upper register.  
Both parts have their own names, e.g. the higher byte of Z is named ZH (=R31), the lower Byte is ZL 
(=R30).  These  names  are  defined  within  the  assembler.  Dividing  a  16-bit-word  constant  into  its  two 
different bytes and writing these bytes to a pointer register is done like follows:

.EQU address = RAMEND ; RAMEND is the highest 16-bit address in SRAM, defined in the *def.inc header file,
LDI YH,HIGH(address) ; Load the MSB of address
LDI YL,LOW(address) ; Load the LSB of address

Accesses  via  pointer  registers  are  programmed  with  specially  designed  instructions.  Read  access  is  
named LD (LoaD), write access named ST (STore), e. g. with the X-pointer: 

Similarly you can use Y and Z for that purpose.

Pointer Sequence Examples

X Read/Write from address X, don't change the pointer LD R1,X or ST X,R1

X+ Read/Write from/to address X, and increment the pointer afterwards by 
one

LD R1,X+ or ST X+,R1

-X First  decrement  the  pointer  by  one  and  read/write  from/to  the  new 
address afterwards

LD R1,-X or ST -X,R1

Reading program flash memory with the Z pointer
There is only one instruction for the read access to the program storage space. It is defined for the pointer  
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pair Z and it is named LPM (Load from Program Memory). The instruction copies the byte at program flash  
address Z to the register R0. As the program memory is organized word-wise (one instruction on one 
address consists of 16 bits or two bytes or one word) the least significant bit selects the lower or upper  
byte (0=lower byte,  1= upper  byte).  Because of  this  the original  address  must  be multiplied  by 2 and 
access is limited to 15-bit or 32 kB program memory. Like this: 

LDI ZH,HIGH(2*address)
LDI ZL,LOW(2*address)
LPM

Following this instruction the address must be incremented to point to the next byte in program memory.  
As this is used very often a special pointer incrementation instruction has been defined to do this:

ADIW ZL,1
LPM

ADIW means ADd Immediate Word and a maximum of 63 can be added this way. Note that the assembler  
expects the lower of the pointer register pair ZL as first parameter. This is somewhat confusing as addition 
is done as 16-bit- operation.

The  complement  instruction,  subtracting  a constant  value  of  between  0  and  63  from a  16-bit  pointer  
register  is  named SBIW, Subtract  Immediate  Word.  (SuBtract  Immediate  Word).  ADIW and SBIW are 
possible for the pointer register pairs X, Y and Z and for the register pair R25:R24, that does not have an 
extra name and does not  allow  access  to  SRAM or  program memory  locations.  R25:R24  is  ideal  for  
handling 16-bit values.

In some later types of AVR the automatic incrementation of Z following the LPM instruction has an extra  
instruction, LPM Z+. Please consult the instruction list in the data sheet of your AVR type to see if this  
applies to the type you are working with.

Tables in the program flash memory
Now that you know how to read from flash memory you might wish to place a list of constants or a string of 
text to the flash and read these. How to insert that table of values in the program memory? This is done 
with the assembler directives .DB and .DW. With that you can insert byte wise or word wise lists of values. 
Byte wise organized lists look like this:

.DB 123,45,67,89 ; a list of four bytes, written in decimal form

.DB "This is a text. " ; a list of byte characters, written as text

You should always place an even number of bytes on each single line. Otherwise the assembler will add a  
zero byte at the end, which might be unwanted.

The similar list of words looks like this:

.DW 12345,6789 ; a list of two word constants

Instead of constants you can also place labels (e. g. jump targets) on that list, like that:

Label1:
[ ... here are some instructions ... ]
Label2:
[ ... here are some more instructions ... ]
Table:
.DW Label1,Label2 ; a word wise list of labels

Labels should start in column 1, but have to be ending with a “:”. Note that reading the labels from that  
table with LPM (and subsequent incrementation of the pointer) first yields the lower byte of the word, then  
the upper byte.

Accessing registers with pointers
A very special application for the pointer registers is the access to the registers themselves. The registers  
are located in the first 32 bytes of the chip's address space (at address 0x0000 to 0x001F). This access is  
only meaningful if you have to copy the register's content to SRAM or EEPROM or read these values from  
there back into the registers. More common for the use of pointers is the access to tables with fixed values 
in the program memory space. Here is, as an example, a table with 10 different 16-bit values, where the 
fifth table value is read to R25:R24:

MyTable:
.DW 0x1234,0x2345,0x3456,0x4568,0x5678 ; The table values, word wise
.DW 0x6789,0x789A,0x89AB,0x9ABC,0xABCD ; organized
Read5: LDI ZH,HIGH(MyTable*2) ; address of table to pointer Z

LDI ZL,LOW(MyTable*2) ; multiplied by 2 for bytewise access
ADIW ZL,10 ; Point to fifth value in table
LPM ; Read least significant byte from program memory
MOV R24,R0 ; Copy LSB to 16-bit register
ADIW ZL,1 ; Point to MSB in program memory
LPM ; Read MSB of table value
MOV R25,R0 ; Copy MSB to 16-bit register

This is only an example. You can calculate the table address in Z from some input value, leading to the 
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respective table values. Tables can be organized byte- or character-wise, too.

Recommendation for the use of registers
The following recommendations, if followed, decide if you are an effective assembler programmer:

• Define names for registers with the .DEF directive, never use them with their direct name Rx.

• If you need pointer access reserve R26 to R31 for that purpose.

• A 16-bit-counter is best located in R25:R24.

• If you need to read from the program memory, e. g. fixed tables, reserve Z (R31:R30) and R0 for that 
purpose.

• If you plan to have access to single bits within certain registers (e. g. for testing flags), use R16 to  
R23 for that purpose.

• Registers necessary for math are best placed to R1 to R15.

• If you have more than enough registers available, place all your variables in registers.

• If you get short in registers, place as many variables as necessary to SRAM.
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Ports

What is a Port?
Ports in the AVR are gates from the central processing unit to internal and external hard- and software 
components. The CPU communicates with these components, reads from them or writes to them, e. g. to  
the  timers  or  the  parallel  ports.  The  most  used  port  is  the  flag  register,  where  flags  from  previous 
operations are written to and branching conditions are read from.

There are 64 different ports, which are not physically available in all different AVR types. Depending on the 
storage space and other internal hardware the different ports are either available and accessible or not.  
Which of the ports can be used in a certain AVR type is listed in the data sheets for the processor type.  
Larger ATmega and ATXmega have more than 64 ports, access to the ports beyond #63 is different then  
(see below).

Ports have a fixed address, over which the CPU communicates. The address is independent from the type 
of AVR. So e.g. the port address of port B is always 0x18 (0x stands for hexadecimal notation, 0x18 is  
decimal  24).  You don't  have to remember these port addresses, they have convenient  aliases.  These  
names are defined in the include files (header files) for the different AVR types, that are provided from the 
producer. The include files have a line defining port B's address as follows: 

.EQU PORTB, 0x18

So we just have to remember the name of port B, not its location in the I/O space of the chip. The include  
file 8515def.inc is involved by the assembler directive

.INCLUDE "C:\Somewhere\8515def.inc"

and the registers of the 8515 are all defined there and easily accessible.

Ports usually are organized as 8-bit numbers, but can also hold up to 8 single bits that don't have much to  
do with each other. If these single bits have a meaning they have their own name associated in the include 
file,  e.  g.  to  enable  the  manipulation  of  a  single  bit.  Due  to  that  name convention  you don't  have to 
remember these bit positions. These names are defined in the data sheets and are given in the include file,  
too. They are provided here in the port tables.

Write access to ports
As an example the MCU General Control Register, called MCUCR, consists of a number of single control  
bits that control the general property of the chip. Here are the details of port MCUCR in the AT90S8515, 
taken from the device data book. Other ports look similar.

It is a port, fully packed with 8 control bits with their own names (ISC00, ISC01, ...). Those who want to  
send their AVR to a deep sleep need to know from the data sheet how to set the respective bits. Like this: 

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, 0b00100000
OUT MCUCR, MyPreferredRegister
SLEEP

The Out instruction brings the content of my preferred register, a Sleep-Enable-Bit called SE, to the port 
MCUCR. SE enables the AVR to go to sleep, whenever the SLEEP instruction shows up in the code. As all 
the other bits of MCUCR are also set by the above instructions and the Sleep Mode bit SM was set to zero, 
a mode called half-sleep will  result:  no further instruction execution will  be performed but the chip still  
reacts to timer and other hardware interrupts. These external events interrupt the big sleep of the CPU if 
they feel they should notify the CPU.

The above formulation is not very transparent, because “0b00100000” is not easy to remember, and no 
one sees easily what bit exactly has been set to one by this instruction. So it is a good idea to formulate 
the LDI instruction as follows:

LDI MyPreferredRegister, 1<<SE

This formulation tells the assembler to

● take a one (“1”),

● to read the bit position of the Sleep Enable bit (“SE”) from the symbol list, as defined in the header  
file 8515def.inc, which yields a value of “5” in that case,

● to shift (“<<”) the “1” five times left (“1<<5”), in steps:
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1. initial: 0000.0001,

2. first shift left: 0000.0010,

3. second shift left: 0000.0100, and so on until

4. fifth shift left: 0010.0000.

● to associate this value to MyPreferredRegister and to insert this LDI instruction into the code.

To make it clear again: This shifting is done by the assembler software only, not within the code in the 
AVR. It is pure convention to increase the readability of the assembler source text.

How does this change, if you want to set the Sleep Mode bit (“SM”) and the Sleep Enable bit (“SE”) within  
the same LDI instruction? SM=1 and SE=1 enables your AVR to react to a SLEEP instruction by going to a 
big sleep, so only do this if you understand what the consequences are. The formulation is like this:

LDI MyPreferredRegister, (1<<SM) | (1<<SE)

Now, the assembler first calculates the value of the first bracket, (1<<SM), a “1” shifted four times left  
(because SM is 4) and that yields 0001.0000, then calculates the second bracket, (1<<SE), a “1” shifted 
five times left (because SE is 5). The “|” between the two brackets means BIT-OR the first and the second  
value,  each  bit  one  by  one.  The  result  of  doing  this  with  0001.0000  and  0010.0000  in  that  case  is 
0011.0000, and that is our desired value for the LDI instruction. Even though the formulation

(1<<SM) | (1<<SE)

might, on the first look, not be more transparent than the resulting value

0011.0000

for a beginner, it is easier to understand which bits of MCUCR are intended to be manipulated in this LDI 
instruction. Especially if you have to read and understand your code some months later, SM and SE are a 
better hint that the Sleep Mode and Enable bits are targeted here. Otherwise you would have to consult the 
device's data book much more often.

Read access to ports
Reading a port's content is in most cases possible using the IN instruction. The following sequence

.DEF MyPreferredRegister = R16
IN MyPreferredRegister, MCUCR

reads the bits in port MCUCR to the register named MyPreferredRegister. As many ports have undefined 
and unused bits in certain ports, these bits always read back as zeros.

More often than reading all 8 bits of a port one must react to a certain status bit within a port. In that case  
we  don't  need  to  read  the  whole  port  and  isolate  the  relevant  bit.  Certain  instructions  provide  an 
opportunity to execute instructions depending on the level of a certain bit of a port (see the JUMP section).

Read-Modify-Write access to ports
Setting or clearing  certain  bits  of a port,  without  changing  the other  port  bits,  is  also possible  without  
reading and writing the other bits in the port. The two instructions are SBI (Set Bit I/O) and CBI (Clear Bit  
I/O). Execution is like this: 

.EQU ActiveBit=0 ; The bit that is to be changed
SBI PortB, ActiveBit ; The bit “ActiveBit” will be set to one
CBI PortB, Activebit ; The bit “ActiveBit” will be cleared to zero

These two instructions have a limitation: only ports with an address smaller than 0x20 can be handled,  
ports above cannot be accessed that way. Because MCUCR in the above examples is at hex address $38, 
the sleep mode and enable bits can't be set or cleared that way. But all the port bits controlling external  
pins (PORTx, DDRx, PINx) are accessible that way.

Memory mapped port access
For the more exotic programmer and the “elephant-like” ATmega and ATXmega (where ATMEL ran out of  
accessible port addresses): the ports can also be accessed using SRAM access instructions, e.g. ST and  
LD. Just add 0x20 to the port's address (remember: the first 32 addresses are associated to the registers!)  
and access the port that way. Like demonstrated here:

.DEF MyPreferredRegister = R16
LDI ZH,HIGH(PORTB+32)
LDI ZL,LOW(PORTB+32)
LD MyPreferredRegister,Z

That  only  makes  sense  in  certain  cases,  because  it  requires  more  instructions,  execution  time  and 
assembler lines, but it is possible. It is also the reason why the first address location of the SRAM is 0x60  
or 0x100 in some larger AVR types.



Avr-Asm-Tutorial 25 http://www.avr-asm-tutorial.net

Details of relevant ports in the AVR
The following table holds the most used ports in a “small” AT90S8515. Not all ports are listed here, some 
of the MEGA and AT90S4434/8535 types are skipped. If in doubt see the original reference.

Component Port name Port-Register

Accumulator SREG Status Register

Stack SPL/SPH Stackpointer

External SRAM/External Interrupt MCUCR MCU General Control Register

External Interrupts GIMSK Interrupt Mask Register

GIFR Interrupt Flag Register

Timer Interrupts TIMSK Timer Interrupt Mask Register

TIFR Timer Interrupt Flag Register

8-bit Timer 0 TCCR0 Timer/Counter 0 Control Register

TCNT0 Timer/Counter 0

16-bit Timer 1 TCCR1A Timer/Counter Control Register 1 A

TCCR1B Timer/Counter Control Register 1 B

TCNT1 Timer/Counter 1

OCR1A Output Compare Register 1 A

OCR1B Output Compare Register 1 B

ICR1L/H Input Capture Register

Watchdog Timer WDTCR Watchdog Timer Control Register

EEPROM Access EEAR EEPROM address Register

EEDR EEPROM Data Register

EECR EEPROM Control Register

Serial Peripheral Interface SPI SPCR Serial Peripheral Control Register

SPSR Serial Peripheral Status Register

SPDR Serial Peripheral Data Register

Serial Communication UART UDR UART Data Register

USR UART Status Register

UCR UART Control Register

UBRR UART Baud Rate Register

Analog Comparator ACSR Analog Comparator Control and Status Register

I/O-Ports PORTx Port Output Register

DDRx Port Direction Register

PINx Port Input Register

The status register as the most used port
By far the most often used port is the status register with its 8 bits. Usually access to this port is only by  
automatic setting and clearing bits by the CPU or accumulator, some access is by reading or branching on 
certain bits in that port, in a few cases it is possible to manipulate these bits directly (using the assembler 
instructions SEx or CLx, where x is the bit  abbreviation). Most of these bits  are set or cleared by the 
accumulator through bit-test, compare- or calculation-operations.

The most used bits are:

● Z: If set to one, the previous instruction yielded a zero result.

● C: If set to one, the previous instruction caused a carry of the most significant bit.

The following list has all assembler instructions that set or clear status bits depending on the result of the 
previous instruction execution.

Bit Calculation Logic Compare Bits Shift Other

Z ADD, ADC, ADIW, DEC, 
INC, SUB, SUBI, SBC, 
SBCI, SBIW

AND, ANDI, OR, 
ORI, EOR, COM, 
NEG, SBR, CBR

CP, CPC, 
CPI

BCLR Z, 
BSET Z, CLZ, 
SEZ, TST

ASR, LSL, 
LSR, ROL, 
ROR

CLR
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Bit Calculation Logic Compare Bits Shift Other

C ADD, ADC, ADIW, SUB, 
SUBI, SBC, SBCI, SBIW

COM, NEG CP, CPC, 
CPI

BCLR C, 
BSET C, 
CLC, SEC

ASR, LSL, 
LSR, ROL, 
ROR

-

N ADD, ADC, ADIW, DEC, 
INC, SUB, SUBI, SBC, 
SBCI, SBIW

AND, ANDI, OR, 
ORI, EOR, COM, 
NEG, SBR, CBR

CP, CPC, 
CPI

BCLR N, 
BSET N, 
CLN, SEN, 
TST

ASR, LSL, 
LSR, ROL, 
ROR

CLR

V ADD, ADC, ADIW, DEC, 
INC, SUB, SUBI, SBC, 
SBCI, SBIW

AND, ANDI, OR, 
ORI, EOR, COM, 
NEG, SBR, CBR

CP, CPC, 
CPI

BCLR V, 
BSET V, CLV, 
SEV, TST

ASR, LSL, 
LSR, ROL, 
ROR

CLR

S SBIW - - BCLR S, 
BSET S, CLS, 
SES

- -

H ADD, ADC, SUB, SUBI, 
SBC, SBCI

NEG CP, CPC, 
CPI

BCLR H, 
BSET H, 
CLH, SEH

- -

T - - - BCLR T, 
BSET T, BST, 
CLT, SET

- -

I - - - BCLR I, BSET 
I, CLI, SEI

- RETI

Port details
Port details of the most common ports are shown in an extra table (see annex).
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SRAM

Using SRAM in AVR assembler language
Nearly all AVR-types have static RAM (SRAM) on board (only very few old devices don't). Only very simple 
assembler programs can avoid using this memory space by putting all necessary information into registers.  
If you run out of registers you should be able to program the SRAM to utilize more space. 

What is SRAM?
SRAM are memories that are not directly accessible by the central processing unit (Arithmetic and Logical  

Unit  ALU,  sometimes  called 
accumulator)  like  the registers 
are.  If  you  access  these 
memory  locations  you  usually 
use  a  register  as  interim 
storage.  In  the  example 
displayed  here  a  value  in 
SRAM  will  be  copied  to  the 
register  R2  (1st  instruction),  a 
calculation with the value in R3 
is  made  and  the  result  is 
written  to  R3  (second 
instruction). After that this value 
is  written  back  to  the  same 
SRAM  location  (instruction  3, 
not shown here). 

So it  is  clear  that  operations  with values stored in the SRAM are slower to perform than those using 
registers alone. On the other hand: even the smallest AVR types have 128 bytes of SRAM available, much 
more than the 32 registers can hold.

The types from the old AT90S8515 upwards offer the additional opportunity to connect additional external  
RAM, expanding the internal 512 bytes. From the assembler point-of-view, external SRAM is accessed like 
internal SRAM. No extra instructions must be learned for accessing that external SRAM.

For what purposes can I use SRAM?
Besides simple storage of values, SRAM offers additional opportunities for its use. Not only access with 
fixed addresses is possible, but also the use of pointers, so that floating access to subsequent locations in 
SRAM can  be  programmed.  This  way  you  can  build  up  ring  buffers  for  interim  storage  of  values  or  
calculated (variable) tables. This is not very often used with registers, because they are too few and prefer  
fixed access.

Even more relative is the access using an offset to a fixed starting address in one of the pointer registers.  
In that case a fixed address is stored in a pointer register, a constant value is added to this address and  
read/write access is made to that address with an offset. With that kind of access, tables are  very more  
effective.

But the most relevant use for SRAM is the so-called stack. You can push values (variables) to that stack.  
Be it the content of a register, that is temporarily needed for another purpose. Be it a return address prior to 
calling a subroutine, or the return address prior to a hardware-triggered interrupt. 

How to use SRAM?

Direct addressing
To copy a value to a memory location in SRAM you have to define the address. The SRAM addresses you  
can use reach from the start address (very often 0x0060 in smaller AVRs, 0x0100 in larger ATmega) to the 
end of the physical SRAM on the chip (in the AT90S8515 the highest accessible internal SRAM location is  
0x025F, see the device data sheet of your AVR type for more details on this). 

With the instruction 

STS 0x0060, R1

the content of register R1 is copied to the first SRAM location in address 0x0060. With

LDS R1, 0x0060

the SRAM content at address 0x0060 is copied to the register. This is the direct access with an address 
that has to be defined by the programmer.

The  symbols  defined  in  the  *def.inc  include  file,  SRAM_START  and  RAMEND,  allow  to  place  your  
variables within the SRAM space. So it is better to use these definitions to access the 15 th memory byte, 
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like this:

LDS R1,SRAM_START+15

Symbolic names can be used to avoid handling fixed addresses, that require a lot of work, if you later want 
to change the structure of your data in the SRAM. These names are easier to handle than hex numbers, so 
give that address a name like:

.EQU MyPreferredStorageCell = SRAM_START
STS MyPreferredStorageCell, R1

Yes, it isn't shorter, but easier to remember. Use whatever name that you find to be convenient.

Pointer addressing
Another kind of access to SRAM is the use of pointers. You need two registers for that purpose, that hold  
the 16-bit address of the location. As we learned in the Pointer-Register-Division, pointer registers are the 
register pairs X (XH:XL, R27:R26), Y (YH:YL, R29:R28) and Z (ZH:ZL, R31:R30). They allow access to the 
location they point to directly (e. g. with ST X, R1), after prior decrementing the address by one (e. g. ST -
X, R1) or with subsequent auto-incrementation of the address (e. g. ST X+, R1). A complete access to  
three cells in a row looks like this:

.EQU MyPreferredStorageCell = SRAM_START

.DEF MyPreferredRegister = R1

.DEF AnotherRegister = R2

.DEF AndYetAnotherRegister = R3
LDI XH, HIGH(MyPreferredStorageCell)
LDI XL, LOW(MyPreferredStorageCell)
LD MyPreferredRegister, X+
LD AnotherRegister, X+
LD AndYetAnotherRegister, X

Easy to operate, those pointers. And as easy as in other languages than assembler, that claim to be easier  
to learn.

Pointer with offset
The third construction is a little bit  more exotic  and only  experienced programmers use this  in certain  
cases. Let's assume we very often in our program need to access three consecutive SRAM locations. Let's  
further assume that we have a spare pointer register pair, so we can afford to use it exclusively for our 
purpose.  If  we would  use the ST/LD instructions  we always have to change the pointer  if  we access  
another location of the three. Not very convenient.

To avoid this, and to confuse the beginner, the access with offset was invented. During that access the 
register value isn't changed. The address is calculated by temporarily adding the fixed offset. In the above  
example the access to location 0x0062 would look like this. First, the pointer register is set to our central  
location SRAM_START:

.EQU MyPreferredStorageCell = SRAM_START

.DEF MyPreferredRegister = R1
LDI YH, HIGH(MyPreferredStorageCell)
LDI YL, LOW(MyPreferredStorageCell)

Somewhere later in the program I'd like to write to cell 2 above SRAM_START:

STD Y+2, MyPreferredRegister

The corresponding instruction for reading from SRAM with an offset

LDD MyPreferredRegister, Y+2

is also possible.

Note that the 2 is not really added to Y, just temporarily during the execution of this instruction. To confuse  
you further, this can only be done with the Y- and Z-register-pair, not with the X-pointer!

Of about 100 cases, the use of this opportunity is more effective in one single case. So don't care if you  
don't understand this in detail. It is only for experts, and only necessary in a few cases.

That's it with the SRAM, but wait: the most relevant use as stack is still to be learned. 

Use of SRAM as stack
The  most  common use of  SRAM is  its  use  as  stack.  The  stack  is  a  tower  of  wooden  blocks.  Each  
additional block goes onto the top of the tower, each recall of a value removes the most upper block from  
the tower. Removal of blocks from the base or from any lower portion of the tower is too complicated and 
confuses your whole tower, so never try this. This structure is called Last-In-First-Out (LIFO) or easier: the 
last to go on top will be the first coming down from the top.
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Defining SRAM as stack
To use SRAM as stack requires the setting of the stack pointer first. The stack pointer is a 16-bit-pointer,  
accessible like a port. The double register is named SPH:SPL. SPH holds the most significant address 
byte, SPL the least significant. This is only true, if the AVR type has more than 256 byte SRAM. If not, SPH  
is not necessary, is undefined, and must not and cannot be used. We assume we have more than 256  
bytes SRAM in the following examples. 

To construct the stack, the stack pointer is loaded with the highest available SRAM address. (In our case 
the  tower  grows  downwards,  towards  lower  addresses,  just  for  historic  reasons  and  to  confuse  the 
beginner!).

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, HIGH(RAMEND) ; Upper byte
OUT SPH,MyPreferredRegister ; to stack pointer
LDI MyPreferredRegister, LOW(RAMEND) ; Lower byte
OUT SPL,MyPreferredRegister ; to stack pointer

The value RAMEND is, of course, specific for the processor type. It is defined in the INCLUDE file for the  
processor type. The file 8515def.inc has the line: 

.equ RAMEND =$25F ; Last On-Chip SRAM Location

The file 8515def.inc is included with the assembler directive

.INCLUDE "C:\somewhere\8515def.inc"

at the beginning of our assembler source code.

So we defined the stack now,  and we don't  have to care about the stack pointer  any more,  because 
manipulations of that pointer are mostly automatic. 

Use of the stack
Using the stack is easy. The content of registers are pushed onto the stack like this:

PUSH MyPreferredRegister ; Throw that value on top of the stack

Where that value goes to is totally uninteresting. That the stack pointer was decremented after that push,  
we don't have to care. If we need the content again, we just add the following instruction:

POP MyPreferredRegister ; Read back the value from the top of the stack

With POP we just get the value that was last pushed on top of the stack. Pushing and popping registers 
makes sense, if

• the content is again needed some lines of the code later,

• all registers are in use, and if

• no other opportunity exists to store that value somewhere else.

If  these conditions  are not  given,  the use of  the stack for saving registers  is  useless and just  wastes 
processor time.

More sense makes the use of the stack in subroutines, where you have to return to the program location  
that  called  the  routine.  In  that  case the  calling  program code pushes  the  return  address  (the  current  
program counter value) onto the stack and temporarily jumps to the subroutine.  After its execution the  
subroutine pops the return address from the stack and loads it back into the program counter. Program 
execution is continued exactly one instruction behind the instruction, where the call happened:

RCALL Somewhat ; Jump to the label “somewhat:”
 [...] here we will later continue with the program.

Here the jump to the label “somewhat:” somewhere in the program code,

Somewhat: ; this is the jump address
[...] Here we do something
[...] and we are finished and want to jump back to the calling location:

RET

During execution of the RCALL instruction the already incremented program counter, a 16-bit-address, is 
pushed onto the stack, using two pushes (the LSB and the MSB). By reaching the RET instruction, the 
content of the previous program counter is reloaded with two pops and execution continues there.

You don't need to care about the address of the stack, where the counter is loaded to. This address is  
automatically generated. Even if you call a subroutine within that subroutine the stack function is fine. This  
just packs two return addresses on top of the stack, the nested subroutine removes the first  one,  the  
calling subroutine the remaining one. As long as there is enough SRAM, everything is fine.

Servicing hardware interrupts isn't possible without the stack. Interrupts stop the normal execution of the  
program, wherever the program currently is. After execution of a specific service routine as a reaction to 
that interrupt program execution must return to the previous location, to before the interrupt occurred. This  
would not be possible if the stack is not able to store the return address.
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The enormous advances of having a stack for interrupts are the reason, why even the smallest AVRs 
without having SRAM have at least a very small hardware stack.

Bugs with the stack operation
For the beginner there are a lot of possible bugs, if you first learn to use stack. 

Very clever is the use of the stack without first setting the stack pointer. Because this pointer is set to zero 
at program start, the pointer points to the location 0x0000, where register R0 is located. Pushing a byte 
results in a write to that register, overwriting its previous content. An additional push to the stack writes to 
0xFFFF, an undefined position (if you don't have external SRAM there). A RCALL and RET will return to a  
strange address  in  program memory.  Be sure:  there is  no warning,  like a window popping  up saying  
something like „Illegal access to memory location xxxx“.

Another opportunity to construct bugs is to forget to pop a previously pushed value, or popping a value  
without pushing one first.

In a very few cases the stack overflows to below the first SRAM location. This happens in case of a never-
ending recursive call. After reaching the lowest SRAM location the next pushes write to the ports (0x005F 
down to 0x0020), then to the registers (0x001F to 0x0000). Funny and unpredictable things happen with 
the chip hardware, if this goes on. Avoid this bug, it can even destroy your external hardware!



Avr-Asm-Tutorial 31 http://www.avr-asm-tutorial.net

Jumping and Branching
Here we discuss all instructions that control the sequential execution of a program. It starts with the starting 
sequence on power-up of the processor, continues with jumps, interrupts, etc. 

Controlling sequential execution of the program

What happens during a reset?
When the power supply voltage of an AVR rises and the processor starts its work, the hardware triggers a 
reset sequence. The ports are set to their initial values, as defined in the device data sheet. The counter  
for the program steps will be set to zero. At this address the execution always starts. Here we have to have 
our first word of code. But not only during power-up this address is activated: 

• During an external reset on the reset pin of the device a restart is executed.

• If the Watchdog counter reaches its maximum count, a reset is initiated. A watchdog timer is an 
internal  clock  that  must  be  reseted  from time  to  time  by  the  program,  otherwise  it  restarts  the 
processor.

• You can call reset by a direct jump to that address (see the jump section below).

The third case is not a real reset, because the automatic resetting of register- and port-values to a well-
defined default value is not executed. So, forget that for now. 

The second option, the watchdog reset, must first be enabled by the program. It is disabled by default. 
Enabling  requires write instructions to the watchdog's  port.  Setting the watchdog counter  back to zero 
requires the execution of the instruction 

WDR

to avoid a reset.

After execution of a reset, with setting registers and ports to default values, the code at address 0000 is 
word wise read to the execution part of the processor and is executed. During that execution the program 
counter is already incremented by one and the next word of code is already read to the code fetch buffer  
(Fetch during Execution). If the executed instruction does not require a jump to another location in the 
program the next instruction is executed immediately. That is why the AVRs execute extremely fast, each  
clock cycle executes one instruction (if no jumps occur).

The first instruction of an executable is always located at address 0000. To tell the compiler (assembler  
program) that our source code starts now and here, a special directive can be placed at the beginning,  
before the first code in the source is written:

.CSEG

.ORG 0000

The first directive, .CSEG, lets the compiler switch his output to the code section. All following is translated 
as code and is later written to the program flash memory section of the processor. Another target segment 
would be the EEPROM section of the chip, where you also can write bytes or words to.

.ESEG

The third segment is the SRAM section of the chip.

.DSEG

Other than with EEPROM content, where content is really going to the EEPROM during programming of  
the chip, the DSEG segment content is not programmed to the chip. There is no opportunity to burn any 
SRAM content. So the .DSEG is only used for correct label calculation during the assembly process. An 
example:

.DSEG ; The following are label definitions within the SRAM segment
MyFirstVariableIsAByte:
.BYTE 1 ; the DSEG-Pointer moves one byte upwards
MySecondVariableIsAWord:
.BYTE 2 ; the DSEG-Pointer moves two bytes upwards
MyThirdVariableIsAFieldForABuffer:
.BYTE 32; the DSEG-Pointer moves 32 bytes upwards

So, only three labels are defined within the assembler, no content is produced.

The ORG directive within the code segment, .ORG, above stands for the word “origin” and manipulates the 
address within the code segment, where assembled words go to. As our program always starts at 0x0000  
the CSEG/ORG directives are trivial, you can skip these without getting into an error. We could start at  
0x0100, but that makes no real sense as the processor starts execution at 0000. If you want to place a 
table exactly to a certain location of the code segment, you can use ORG. But be careful with that: Only  
jump forward with .ORG, never backwards. And be aware that the flash memory space that you skipped in 
between your current code location and the one you forced with .ORG is always filled with the instruction  
word 0xFFFF. This instruction does nothing, just goes to the next instruction. So be sure your execution 
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never jumps into such undefined space in between.

If on the beginning of your code section you want to set a clear sign within your code, after first defining a 
lot of other things with .DEF- and .EQU-directives, use the CSEG/ORG sequence as a signal for yourself,  
even though it might not be necessary to do that.

As the first code word is always at address zero, this location is also called the reset vector. Following the  
reset vector the next positions in the program space, addresses 0x0001, 0x0002 etc., are interrupt vectors. 
These are the positions where the execution jumps to if an external or internal interrupt has been enabled  
and occurs. These positions called vectors are specific for each processor type and depend on the internal  
hardware available (see below). The instructions to react to such an interrupt have to be placed to the 
proper vector location. If you use interrupts, the first code, at the reset vector, must be a jump instruction,  
to jump over the other vectors. Each interrupt vector, that is planned to be enabled, must hold a jump 
instruction to the respective interrupt service routine. If the vector is not used, a dummy instruction like  
RETI (RETurn from Interrupt) is best placed here. The typical program sequence at the beginning is like  
follows:

.CSEG

.ORG 0000
RJMP Start ; the reset vector
RJMP IntServRout1 ; the interrupt service routine for the first interrupt
RETI ; a dummy for an unused interrupt
RJMP IntServRout3 ; the interrupt service routine for the third interrupt

[...] here we place all the other interrupt vector instructions

[...] and here is a good place for the interrupt service routines themselves
IntServRout1:
    [...] Code of the first int service routine

RETI ; end of service routine 1
IntServRout2:
    [...] Code of the third int service routine

RETI ; end of service routine 2
[...] other code
Start: ; This here is the program start
[...] Here we place our main program

The instruction “RJMP Start” results in a jump to the label Start:, located some lines below. Remember,  
labels  always  end  with  a  “:”.  Labels,  that  don't  fulfill  these  conditions  are  not  taken  for  serious,  but 
interpreted as instructions. Missing labels result in an error message ("Undefined label"), and compilation 
is interrupted.

Linear program execution and branches
Program execution is always linear, if nothing changes the sequential execution. These changes are the 
execution of an interrupt or of branching instructions.

Branching
Branching is very often depending on some condition, called conditional  branching. As an example we 
assume we want to construct a 32-bit-counter using the registers R1 to R4. The least significant byte in R1 
is incremented by one. If the register overflows during that operation (255 + 1 = 0), we have to increment  
R2 similarly. If R2 overflows, we have to increment R3, and so on.

Incrementation by one is  done with the instruction INC. If an overflow occurs during that  execution of 
INC R1, the zero bit in the status register is set to one (the result of the operation is zero). The carry bit in 
the status register, as usually set when something overflows, is not changed during an INC. This is not to 
confuse the beginner, but carry can be used for other purposes instead. The Zero-Bit or Zero-flag in this 
case is enough to detect an overflow. If no overflow occurs we can just leave the counting sequence.

If the Zero-bit is set, we must execute additional incrementation of the next upper register. To confuse the 
beginner the branching instruction, that we have to use, is not named BRNZ but BRNE (BRanch if Not 
Equal). A matter of taste ...

The whole count sequence of the 32-bit-counter should then look like this:

INC R1 ; increase content of register R1
BRNE GoOn32 ; if not zero, branch to GoOn32:
INC R2 ; increase content of register R2
BRNE GoOn32
INC R3
BRNE GoOn32
INC R4

 GoOn32:

So that's about it. An easy thing. The opposite condition to BRNE is BREQ or BRanch EQual.

Which of the status bits, also called processor flags, are changed during execution of an instruction is  
listed in instruction code tables, see the List of Instructions. Similarly to the Zero-bit you can use the other  
status bits like that:

BRCC  label/BRCS label; Carry-flag 0 (BRCC) or 1 (BRCS)



Avr-Asm-Tutorial 33 http://www.avr-asm-tutorial.net

BRSH  label; Equal or greater
BRLO label; Smaller
BRMI label; Minus
BRPL label; Plus
BRGE label; Greater or equal (with sign bit)
BRLT label; Smaller (with sign bit)
BRHC label/BRHS label; Half overflow flag 0 or 1
BRTC label/BRTS label; T-Bit 0 or 1
BRVC label/BRVS label; Two's complement flag 0 or 1
BRIE label/BRID label; Interrupt enabled or disabled

to react to the different conditions. Branching always occurs if the condition is met. Don't be afraid, most of  
these instructions are rarely used. For the beginner only Zero and Carry are relevant. 

Timing during program execution
Like mentioned above the required time to execute one instruction is equal to the processor's clock cycle.  
If the processor runs on a 4 MHz clock frequency then one instruction requires 1/4 µs or 250 ns, at 10 MHz 
clock only 100 ns. The required time is as exact as the internal or external or xtal clock is. If you need  
exact timing an AVR is the optimal solution for your problem. Note that there are a few instructions that 
require two or more cycles, e. g. the branching instructions (if branching occurs) or the SRAM read/write  
sequence. See the instruction table for details.

To define exact timing there must be an opportunity that does nothing else than delay program execution.  
You might use other instructions that do nothing, but more clever is the use of the no-operation instruction  
NOP. This is the most useless instruction:

NOP

This  instruction  does  nothing  but  wasting  processor  time.  At  4 MHz clock  we need just  four  of  these 
instructions to waste 1 µs. No other hidden meanings here on the NOP instruction. For a signal generator  
with 1 kHz we don't need to add 4000 such instructions to our source code, but we use a software counter  
and some branching instructions. With these we construct a loop that executes for a certain number of 
times and are exactly  delayed.  A counter  could  be a 8-bit-register  that  is  decremented with  the DEC 
instruction, e. g. like this:

CLR R1 ; one clock cycle
Count:

DEC R1 ; one clock cycle
BRNE Count ; two for branching, one for not branching

This sequence wastes (1) + (255*2) + (1*3) = 514 clock cycles or 128.5 µs at 4 MHz.

16-bit counting can also be used to delay exactly, like this

LDI ZH,HIGH(65535) ; one clock cycle
LDI ZL,LOW(65535) ; one clock cycle

Count:
SBIW ZL,1 ; two clock cycles
BRNE Count ; two for branching, one for not branching

This sequence wastes (1+1) + (65534*4) + (1*3) = 262,141 clock cycles or 65,535.25 µs at 4 MHz.

If you use more registers to construct nested counters you can reach any delay. And the delay is as exact  
as your clock source is, even without a hardware timer. 

Macros and program execution
Very often you have to write identical or similar code sequences on different occasions in your source  
code. If you don't want to write it once and jump to it via a subroutine call you can use a macro to avoid  
getting tired writing the same sequence several times. Macros are code sequences, designed and tested  
once, and inserted into the code by its macro name. As an example we assume we need to delay program 
execution several times by 1 µs at 4 MHz clock. Then we define a macro somewhere in the source:

.MACRO Delay1
NOP
NOP
NOP
NOP

.ENDMACRO

This definition of the macro does not yet produce any code, it is silent. Code is produced only if you call  
that macro by its name:

[...] somewhere in the source code
Delay1

[...] code goes on here

This results in four NOP instructions inserted to the code at that location. An additional “Delay1” inserts  
additional four NOP instructions.

If your macro has longer code sequences, or if you are short in code storage space, you should avoid the  
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use of macros and use subroutines instead.

By calling a macro by its name you can add some parameters to manipulate the produced code. But this is  
more than a beginner has to know about macros.

Subroutines
In contrary to macros a subroutine does save program storage space. The respective sequence is only  
once stored in the code and is called from whatever part of the code. To ensure continued execution of the  
sequence following the subroutine call you need to return to the caller. For a delay of 10 cycles you need  
to write this subroutine:

Delay10: ; the call of the subroutine requires some cycles
NOP ; delay one cycle
NOP ; delay one cycle
NOP ; delay one cycle
RET ; return to the caller

Subroutines  always  start  with  a  label,  otherwise  you  would  not  be  able  to  jump  to  it,  here  named 
“Delay10:”. Three NOPs follow and a RET instruction. If you count the necessary cycles you just find 7 
cycles (3 for the NOPs, 4 for the RET). The missing 3 are for calling that routine:

[...] somewhere in the source code:
RCALL Delay10

[...] further on with the source code
RCALL is a relative call. The call is coded as relative jump, the relative distance from the calling routine to 
the subroutine is calculated by the compiler. The RET instruction jumps back to the calling routine. Note 
that  before  you use subroutine  calls  you  must  set  the  stack  pointer  (see Stack),  because  the  return  
address must be packed on top of the stack during the RCALL instruction.

If you want to jump directly to somewhere else in the code you have to use the jump instruction:

[...] somewhere in the source code
RJMP Delay10

Return:
[...] further on with source code

Note that RJMP is also a relative jump instruction with limited distance. Only ATmega AVRs have a JMP 
instruction allowing jumps over the complete flash memory space, but these instructions require two words 
and more instruction time than RJMP, so avoid it if possible.

The routine that you jumped to can not use the RET instruction in that case, because RJMP does not place 
the current execution address to the stack. To return back to the calling location in the source requires to 
add another label and the called routine to jump back to this label. Jumping like this is not like calling a  
subroutine because you can't call this routine from different locations in the code. 

RCALL  and  RJMP  are  unconditioned  branches.  To  jump  to  another  location,  depending  on  some 
condition, you have to combine these with branching instructions. Conditioned calling of a subroutine can 
best be done with the following (confusing) instructions. If you want to call a subroutine depending on a 
certain bit in a register use the following sequence:

SBRC R1,7 ; Skip the next instruction if bit 7 in register 1 is 0
RCALL UpLabel ; Call that subroutine

SBRC reads „Skip next instruction if  Bit  7 in Register  R1 is Clear (=Zero)“.  The RCALL instruction to 
“UpLabel:” is only executed if bit 7 in register R1 is 1, because the next instruction is skipped if it would be 
0. If you like to call the subroutine in case this bit is 0 then you use the corresponding instruction SBRS.  
The instruction  following  SBRS/SBRC can be a single word or  double  word instruction,  the processor 
knows how far he has to jump over it. Note that execution times are different then. To jump over more than  
one following instruction these instructions cannot be used.

If you have to skip an instruction in case two registers have the same value you can use the following 
exotic instruction:

CPSE R1,R2 ; Compare R1 and R2, skip next instruction if equal
RCALL SomeSubroutine ; Call SomeSubroutine

A rarely used instruction, forget it for the beginning. If you like to skip the following instruction depending 
on a certain bit in a port use the following instructions SBIC and SBIS. That reads “Skip if the Bit in I/o  
space is Clear (or Set)”, like this:

SBIC PINB,0 ; Skip next instruction if Bit 0 on input port B is 0
RJMP ATarget ; Jump to the label ATarget

The  RJMP-instruction  is  only  executed if  bit  0  in  port  B  is  high.  This  is  something  confusing  for  the 
beginner. The access to the port bits is limited to the lower half of ports, the upper 32 ports are not usable  
here.

Now, another exotic application for the expert. Skip this if you are a beginner. Assume we have a bit switch 
with 4 switches connected to port B. Depending on the state of these 4 bits we would like to jump to 16  
different locations in the code. Now we can read the port and use several branching instructions to find out,  
where we have to jump to today. As alternative you can write a table holding the 16 addresses, like this:
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MyTab:
RJMP Routine1
RJMP Routine2
[...]
RJMP Routine16

In our code we copy that address of the table to the Z pointer register:

LDI ZH,HIGH(MyTab)
LDI ZL,LOW(MyTab)

and add the current state of the port B (in R16) to this address.

ADD ZL,R16
BRCC NoOverflow
INC ZH

 NoOverflow:

Now we can jump to this location in the table, either for calling a subroutine: 

ICALL ; call the subroutine which address is in Z

or as a jump with no way back:

IJMP ; jump to address in Z

The processor loads the content of the Z register pair into its program counter and continues operation 
there. More clever than branching over and over? 

Interrupts and program execution
Very often we have to react on hardware conditions or other events. An example is a change on an input  
pin. You can program such a reaction by writing a loop, asking whether a change on the pin has occurred.  
This method is called polling, its like a bee running around in circles searching for new flowers. If there are  
no other things to do and reaction time does not matter, you can do this with the processor. If you have to  
detect short pulses of less than a µs duration this method is useless. In that case you need to program an  
interrupt.

An interrupt is triggered by some hardware conditions. All hardware interrupts are disabled at reset time by  
default, so the condition has to be enabled first. The respective port bits enabling the component's interrupt 
ability are set first. The processor has a bit in its status register enabling him to respond to the interrupt of  
all  components,  the  Interrupt  Enable  Flag.  Enabling  the  general  response  to  interrupts  requires  the 
following instruction:

SEI ; Set Int Enable Bit

Each single interrupt requires additional port manipulation to be enabled.

If the interrupting condition occurs, e. g. a change on the port bit, the processor pushes the actual program  
counter to the stack (which must be enabled first! See initiation of the stackpointer in the Stack section of  
the SRAM description). Without that, the processor wouldn't be able to return back to the location, where 
the  interrupt  occurred  (which  could  be  any  time  and  anywhere  within  program execution).  After  that,  
processing  jumps  to  the predefined  location,  the interrupt  vector,  and executes  the instructions  there.  
Usually the instruction there is a JUMP instruction to the interrupt service routine, located somewhere in 
the  code.  The  interrupt  vector  is  a  processor-specific  location  and  depending  from  the  hardware 
component and the condition that leads to the interrupt. The more hardware components and the more 
conditions, the more vectors. The different vectors for some older AVR types are listed in the following 
table. (The first vector isn't an interrupt but the reset vector, performing no stack operation!)

Name Interrupt Vector Address Triggered by

2313 2323 8515

RESET 0000 0000 0000 Hardware Reset, Power-On-Reset, Watchdog Reset

INT0 0001 0001 0001 Level change on the external INT0 pin

INT1 0002 - 0002 Level change on the external INT1 pin

TIMER1CAPT 0003 - 0003 Capture event on Timer/Counter 1

TIMER1COMPA - - 0004 Timer/Counter 1 = Compare value A

TIMER1 COMPB - - 0005 Timer/Counter 1 = Compare value B

TIMER1 COMP1 0004 - - Timer/Counter 1 = Compare value 1

TIMER1 OVF 0005 - 0006 Timer/Counter 1 Overflow

TIMER0 OVF 0006 0002 0007 Timer/Counter 0 Overflow

SPI STC - - 0008 Serial Transmit Complete

UART TX 0007 - 0009 UART char in receive buffer available
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Name Interrupt Vector Address Triggered by

UART UDRE 0008 - 000A UART transmitter ran empty

UART TX 0009 - 000B UART All Sent

ANA_COMP - - 000C Analog Comparator

Note that  the  capability  to react  to  events  is  very different  for  the different  types.  The addresses are  
sequential, but not identical for different types. Consult the data sheet for each AVR type.

The higher  a  vector  in  the list  the higher  is  its  priority.  If  two or  more components  have an interrupt  
condition pending at the same time, the up most vector with the lower vector address wins. The lower int  
has to wait until the upper int was served. To disable lower ints from interrupting during the execution of its  
service routine the first executed int disables the processor's I-flag. The service routine must re-enable this  
flag after it is done with its job.

For re-setting the I status bit there are two ways. The service routine can end with the instruction:

RETI

This return from the int routine restores the I-bit after the return address has been loaded to the program  
counter.

The second way is to enable the I-bit by the instruction

SEI ; Set Interrupt Enabled
RET ; Return

This is not the same as the RETI, because subsequent interrupts are already enabled before the program  
counter  is re-loaded with the return address. If another int  is pending,  its execution is already starting  
before the return address is popped from the stack. Two or more nested addresses remain on the stack.  
No bug is to be expected, but it is an unnecessary risk doing that. So just use the RETI instruction to avoid  
this unnecessary flow to the stack.

An Int-vector can only hold a relative jump instruction to the service routine. If a certain interrupt is not used 
or undefined we can just put a RETI instruction there, in case an erroneously enabled int happens before 
we wrote an interrupt service routine. In a few cases it is absolutely necessary to react to these false ints.  
That is the case if the execution of the respective service routine does not automatically reset the interrupt  
condition  flag  of  the  peripheral.  In  that  case  a  simple  RETI  would  reset  the  otherwise  never-ending 
interrupts. This is the case with some of the UART interrupts.

As,  after  an interrupt  is  under  service,  further  execution  of  lower-priority  interrupts  are blocked,  all  int  
service routines should be as short as possible. If you need to have a longer routine to serve the int, use  
one of the two following methods. The first is to allow ints by SEI within the service routine, whenever 
you're done with the most urgent tasks. This is not very clever. More convenient is to perform the urgent 
tasks,  setting  a  flag  somewhere  in  a  register  for  the  slower  reaction  portions  and  return  from the  int  
immediately.

A very serious rule for int service routines is:

The first instruction is always to save the processor status flags in a register or on 
the stack.

Do this before you use instructions that might change flags in the status flag register. The reason is that 
the interrupted main program might just be in a state using the flag for a branch decision, and the int would  
just change that flag to another state. Funny things would happen from time to time. The last instruction 
before the RETI therefore is to copy the saved flags from the register back to status port or to pop the  
status register content from the stack and restore its original content. The following shows examples how 
to do that:

Saving in a register: Saving on the stack:

Isr: Isr:
IN R15,SREG ; save flags PUSH R15 ; save register on stack
[... more instructions...] IN R15, SREG

[...more instructions...]
OUT SREG,R15 ; restore flags OUT SREG,R15 ; restore flags

POP R15
RETI ; return from interrupt RETI ; return from interrupt

The method on the right is slower, the method on the left requires a register exclusively for that purpose.

Generally: All used registers in a service routine should either be exclusively reserved for that purpose or  
saved on stack and restored at the end of the service routine. Never change the content of a register within 
an int service routine that is used somewhere else in the normal program without restoring it.

Because of these basic requirements a more sophisticated example for an interrupt service routine here.

.CSEG ; Code-Segment starts here

.ORG 0000 ; Address is zero
RJMP Start ; The reset-vector on Address 0000
RJMP IService ; 0001: first Int-Vector, INT0 service routine
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[...] here other vectors
 
Start: ; Here the main program starts
[...] here is enough space for defining the stack and other things
 
IService: ; Here we start with the Interrupt-Service-Routine

PUSH R16 ; save a register to stack
IN R16,SREG ; read status register
PUSH R16 ; and put on stack

[...] Here the Int-Service-Routine does something and uses R16
POP R16 ; get previous flag register from stack
OUT SREG,R16 ; restore old status
POP R16 ; get previous content of R16 from the stack
RETI ; and return from int

Looks a little  bit  complicated,  but  is a prerequisite  for using ints  without  producing serious bugs.  Skip 
PUSH R16 and POP R16 if  you can afford reserving the register for exclusive use within  the service  
routine.  As  an  interrupt  service  routine  cannot  be  interrupted  (unless  you  allow  interrupts  within  the 
routine), all different int service routines can use the same register.

You understand now, why allowing interrupts within an interrupt service routine, and not at its end with 
RETI, is not a good idea?

That's it for the beginner. There are some other things with ints, but this is enough to start with, and not to 
confuse you.
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Calculations
Here we discuss  all  necessary  instructions  for  calculating  in  AVR assembler  language.  This  includes 
number  systems,  setting and clearing  bits,  shift  and rotate,  and adding/subtracting/comparing  and the 
format conversion of numbers. 

Number systems in assembler
The following formats of numbers are common in assembler: 

• Positive whole numbers (Bytes, Words, Longwords, etc.),

• Signed whole numbers (ShortInts, Integers, LongInts, etc.),

• Binary Coded Digits (BCD),

• Packed BCDs,

• ASCII-formatted numbers.

If you come from a high-level language: forget pre-defined number formats. Assembler doesn't have that  
concept nor its (sometimes frustating) limitations. What you earn is: you are the master of your own format!

Positive whole numbers (bytes, words, etc.)
The smallest whole number to be handled in assembler is a byte with eight bits. This codes numbers 
between 0 and 255. Such bytes fit exactly into one register of the MCU. All larger numbers must be based 
on this basic format, using more than one register. Two bytes yield a word (range from 0 .. 65,535), three  
bytes form a longer word (range from 0 .. 16,777,215) and four bytes form a double word (range from 0 ..  
4,294,967,295).

The single bytes of a word or a double word can be stored in whatever register you prefer. Operations with 
these single bytes are programmed byte by byte, so you don't have to put them in a row. In order to form a  
row for a double word we could store it like this:

.DEF r16 = dw0

.DEF r17 = dw1

.DEF r18 = dw2

.DEF r19 = dw3

Registers dw0 to dw3 are in a row, but don't need to be. If we need to initiate this double word at the  
beginning of an application (e. g. to 4,000,000), this should look like this: 

.EQU dwi = 4000000 ; define the constant
LDI dw0,LOW(dwi) ; The lowest 8 bits to R16
LDI dw1,BYTE2(dwi) ; bits 8 .. 15 to R17
LDI dw2,BYTE3(dwi) ; bits 16 .. 23 to R18
LDI dw3,BYTE4(dwi) ; bits 24 .. 31 to R19

So we have splitted this decimal number, called dwi, to its binary portions BYTE4 to BYTE1 and packed 
them into the four byte packages. Now you can calculate with this double word. 

Signed numbers (integers)
Sometimes, but in rare cases, you need negative numbers to calculate with. A negative number is defined 
by interpreting the most significant bit of a byte as sign bit. If it is 0 the number is positive. If it is 1 the 
number is negative. If the number is negative we usually do not store the rest of the number as is, but we 
use  its  inverted  value.  Inverted  means  that  -1  as  a  byte  integer  is  not  written  as  1000.0001  but  as  
1111.1111 instead. That means: subtract 1 from 0 (and forget the overflow). The first bit is the sign bit,  
signaling that this is a negative number. Why this different format (subtracting the number from 0) is used 
is easy to understand: adding -1 (1111.1111) and +1 (0000.0001) yields exactly zero, if you forget the  
overflow that occurs during that operation (to the ninth bit).

In one byte the largest integer number to be handled is +127 (binary 01111111), the smallest one is -128 
(binary 1,0000000). In other computer languages this number format is called short integer. If you need a  
bigger range of values you can add another byte to form a larger integer value, ranging from +32,767 .. -
32,768), four bytes provide a range from +2,147,483,647 .. -2,147,483,648, in other languages called a 
LongInt or DoubleInt.

Binary Coded Digits, BCD
Positive or signed whole numbers in the formats discussed above use the available space most effectively. 
Another, less dense number format, but easier to handle and understand is to store decimal numbers in a 
byte for one digit each. The decimal digit is stored in its binary form in a byte. Each digit from 0 .. 9 needs  
four bits (binary values 0000 .. 1001), the upper four bits of the byte are always zeros, blowing a lot of hot  
air into one byte. For to handle the value 250 we would need at least three bytes, e. g.:
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Bit value 128 64 32 16 8 4 2 1

R16, Digit 1 =2 0 0 0 0 0 0 1 0

R17, Digit 2 = 5 0 0 0 0 0 1 0 1

R18, Digit 3 = 0 0 0 0 0 0 0 0 0

;Instructions to use:
LDI R16,2
LDI R17,5
LDI R18,0

 
You can calculate with these numbers, but this is a bit more complicated in assembler than calculating with 
binary values. The advantage of this format is that you can handle as long numbers as you like, as long as  
you have enough storage space. The calculations are as precise as you like (if  you program AVRs for 
banking applications), and you can convert them very easily to character strings. 

Packed BCDs
If you pack two decimal digits into one byte you don't loose that much storage space. This method is called  
packed binary coded digits. The two parts of a byte are called upper and lower nibble. The upper nibble 
usually holds the more significant digit, which has advantages in calculations (special instructions in AVR 
assembler language). The decimal number 250 would look like this when formatted as a packed BCD: 

Byte Digits Value 8 4 2 1 8 4 2 1

2 4 & 3 02 0 0 0 0 0 0 1 0

1 2 & 1 50 0 1 0 1 0 0 0 0

; Instructions for setting:
LDI R17,0x02 ; Upper byte
LDI R16,0x50 ; Lower byte

To set this correct you can use the binary notation (0b...) or the hexadecimal notation (0x...) to set the 
proper bits to their correct nibble position.

Calculating with packed BCDs is a little more complicated compared to the binary form. Format changes to 
character strings are nearly as easy as with BCDs. Length of numbers and precision of calculations is only  
limited by the storage space. 

Numbers in ASCII-format
Very similar to the unpacked BCD format is to store numbers in ASCII format. The digits 0 to 9 are stored  
using their ASCII (ASCII = American Standard Code for Information Interchange) representation. ASCII is 
a  very  old  format,  developed  and  optimized  for  teletype  writers,  unnecessarily  very  complicated  for 
computer use (do you know what a char named End Of Transmission EOT meant when it was invented?), 
very limited in range for other than US languages (only 7 bits per character), still used in communications  
today  due  to  the  limited  efforts  of  some  operating  system  programmers  to  switch  to  more  effective  
character systems. This ancient system is only topped by the European 5-bit long teletype character set 
called Baudot set or the Morse code, still used by some finger-nervous people.

Within  the ASCII  code system the decimal  digit  0 is represented by the number 48 (hex 0x30,  binary  
0b0011.0000), digit 9 is 57 decimal (hex 0x39, binary 0b0011.1001). ASCII wasn't designed to have these 
numbers on the beginning of the code set as there are already instruction chars like the above mentioned  
EOT for the teletype. So we still have to add 48 to a BCD (or set bit 4 and 5 to 1) to convert a BCD to  
ASCII. ASCII formatted numbers need the same storage space like BCDs. Loading 250 to a register set 
representing that number would look like this:

LDI R18,'2'
LDI R17,'5'
LDI R16,'0'

The ASCII representation of these characters are written to the registers. 

Bit manipulations
To convert a BCD coded digit to its ASCII representation we need to set bit 4 and 5 to a one. In other  
words we need to OR the BCD with a constant value of hex 0x30. In assembler this is done like this:

ORI R16,0x30

If we have a register that is already set to hex 0x30 we can use the OR with this register to convert the  
BCD:

OR R1,R2
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Back from an ASCII character to a BCD is as easy. The instruction

ANDI R16,0x0F

isolates the lower four bits (= the lower nibble). Note that ORI and ANDI are only possible with registers  
above R15. If you need to do this, use one of the registers R16 to R31!

If the hex value 0x0F is already in register R2, you can AND the ASCII character with this register:

AND R1,R2

The other instructions for manipulating bits in a register are also limited for registers above R15. They  
would be formulated like this:

SBR R16,0b00110000 ; Set bits 4 and 5 to one
CBR R16,0b00110000 ; Clear bits 4 and 5 to zero

If one or more bits of a byte have to be inverted you can use the following instruction (which is not possible 
for use with a constant):

LDI R16,0b10101010 ; Invert all uneven bits
EOR R1,R16 ; in register R1 and store result in R1

To invert all bits of a byte is called the One's complement:

COM R1

inverts the content in register R1 and replaces zeros by one and vice versa. Different from that is the Two's 
complement, which converts a positive signed number to its negative complement (subtracting from zero).  
This is done with the instruction

NEG R1

So +1 (decimal: 1) yields -1 (binary 1.1111111), +2 yields -2 (binary 1.1111110), and so on.

Besides the manipulation of the bits in a register, copying a single bit is possible using the so-called T-bit  
of the status register. With

BST R1,0

the T-bit is loaded with a copy of bit 0 in register R1. The T-bit can be set or cleared, and its content can be  
copied to any bit in any register:

CLT ; clear T-bit, or
SET ; set T-bit, or
BLD R2,2 ; copy T-bit to register R2, bit 2

Shift and rotate
Shifting and rotating of binary numbers means multiplying and dividing them by 2. Shifting has several sub-
instructions.

Multiplication with 2 is easily done by shifting all bits of a byte one binary digit left and writing a zero to the 
least significant bit. This is called logical shift left or LSL. The former bit 7 of the byte will be shifted out to  
the carry bit in the status register.

LSL R1

The inverse division by 2 is the instruction called logical shift right, LSR. 

LSR R1

The former bit 7, now shifted to bit 6, is filled with a 0, while the former bit 0 is shifted into the carry bit of  
the status register.  This  carry bit  could be used to round up and down (if  set,  add one to the result).  
Example, division by four with rounding:

LSR R1 ; division by 2
BRCC Div2 ; Jump if no round up
INC R1 ; round up

Div2:
LSR R1 ; Once again division by 2
BRCC DivE ; Jump if no round up
INC R1 ; Round Up

DivE:

So, dividing is easy with binaries as long as you divide by multiples of 2.

If  signed integers  are  used the logical  shift  right  would  overwrite  the sign-bit  in  bit  7.  The instruction 
„arithmetic shift  right“ ASR leaves bit  7 untouched and shifts the 7 lower bits,  inserting a zero into bit  
location 6.

ASR R1

Like with logical shifting the former bit 0 goes to the carry bit in the status register.
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What about multiplying a 16-bit word by 2? The most significant bit of the lower byte has to be shifted to  
yield the lowest bit of the upper byte. In that step a shift would set the lowest bit to zero, but we need to  
shift the carry bit from the previous shift of the lower byte into bit 0 of the upper byte. This is called a rotate.  
During rotation the carry bit in the status register is shifted to bit 0, the former bit 7 is shifted to the carry  
during rotation.

LSL R1 ; Logical Shift Left of the lower byte
ROL R2 ; ROtate Left of the upper byte

The logical shift left in the first instruction shifts bit 7 to carry, the ROL instruction rolls it to bit 0 of the upper  
byte. Following the second instruction the carry bit has the former bit 7 of the upper byte. The carry bit can 
be used to either indicate an overflow (if 16-bit-calculation is performed) or to roll it into more upper bytes  
(if more than 16 bit calculation is done).

Rolling to the right is also possible, dividing by 2 and shifting carry to bit 7 of the result:

LSR R2 ; Logical Shift Right, bit 0 to carry
ROR R1 ; ROtate Right and shift carry in bit 7

It's easy dividing with big numbers. You see that learning assembler is not THAT complicated.

The last instruction that shifts four bits in one step is very often used with packed BCDs. This instruction  
shifts a whole nibble from the upper to the lower position and vice versa. In our example we need to shift  
the upper nibble to the lower nibble position. Instead of using

ROR R1
ROR R1
ROR R1
ROR R1

we can perform that with a single

SWAP R1

This instruction exchanges the upper and lower nibble. Note that the content of the upper nibble will be  
different after applying these two methods. 

Adding, subtracting and comparing
The following calculation operations are too complicated for the beginners and demonstrate that assembler 
is only for extreme experts, hi. Read on your own risk!

Adding and subtracting 16-bit numbers
To start complicated we add two 16-bit-numbers in R1:R2 and R3:R4. (In this notation, we mean that the 
first register is the most significant byte, the second the least significant).

ADD R2,R4 ; first add the two low-bytes
ADC R1,R3 ; then the two high-bytes

Instead of a second ADD we use ADC in the second instruction. That means add with carry, which is set or  
cleared during the first instruction, depending from the result. Already scared enough by that complicated 
math? If not: take this!

We subtract R3:R4 from R1:R2.

SUB R2,R4 ; first the low-byte
SBC R1,R3 ; then the high-byte

Again the same trick: during the second instruction we subtract another 1 from the result if the result of the 
first instruction had an overflow. Still breathing? If yes, handle the following!

Comparing 16-bit numbers
Now we compare a 16-bit-word in R1:R2 with the one in R3:R4 to evaluate whether it is bigger than the  
second one. Instead of SUB we use the compare instruction CP, instead of SBC we use CPC:

CP R2,R4 ; compare lower bytes
CPC R1,R3 ; compare upper bytes

If the carry flag is set now, R1:R2 is larger than R3:R4.

Comparing with constants
Now we add some more complicated stuff. We compare the content of R16 with a constant: 0b10101010.

CPI R16,0xAA

If the Zero-bit in the status register is set after that, we know that R16 is equal to 0xAA. If the carry-bit is  
set, we know, it is smaller. If Carry is not set and the Zero-bit is not set either, we know it is larger.

And now the most complicated test. We evaluate whether R1 is zero or negative:
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TST R1

If the Z-bit is set, the register R1 is zero and we can follow with the instructions BREQ, BRNE, BRMI, 
BRPL, BRLO, BRSH, BRGE, BRLT, BRVC or BRVS to branch around a little bit. 

Packed BCD math
Still with us? If yes, here is some packed BCD calculations. Adding two packed BCDs can result in two  
different overflows. The usual carry shows an overflow, if the higher of the two nibbles overflows to more 
than 15 decimal. Another overflow, from the lower to the upper nibble occurs, if the two lower nibbles add 
to more than 15 decimal.

To take an example we add the packed BCDs 49 (=hex 49) and 99 (=hex 99) to yield 148 (=hex 0x0148).  
Adding these in binary math, results in a byte holding hex 0xE2, no byte overflow occurs. The lower of the  
two nibbles should have an overflow, because 9+9=18 (more than 9) and the lower nibble can only handle 
numbers up to 15. The overflow was added to bit 4, the lowest significant bit of the upper nibble. Which is  
correct! But the lower nibble should be 8 and is only 2 (18 = 0b0001.0010). We should add 6 to that nibble  
to yield a correct result. Which is quite logic, because whenever the lower nibble reaches more than 9 we 
have to add 6 to correct that nibble.

The upper nibble is totally incorrect, because it is 0xE and should be 3 (with a 1 overflowing to the next  
upper digit of the packed BCD). If we add 6 to this 0xE we get to 0x4 and the carry is set (=0x14). So the  
trick is to first add these two numbers and then add 0x66 to correct the 2 digits of the packed BCD. But 
halt: what if adding the first and the second number would not result in an overflow to the next nibble? And 
not result in a digit above 9 in the lower nibble? Adding 0x66 would then result in a totally incorrect result.  
The lower 6 should only be added if the lower nibble either overflows to the upper nibble or results in a  
digit larger than 9. The same with the upper nibble.

How do we know, if an overflow from the lower to the upper nibble has occurred? The MCU sets the H-bit  
in the status register, the half-carry bit. The following shows the algorithm for the different cases that are  
possible after adding two nibbles and adding hex 0x6 after that.

1. Add the nibbles. If overflow occurs (C for the upper nibbles, or H for the lower nibbles), add 6 to correct,  
if not, do step 2.

2. Add 6 to the nibble. If overflow occurs (C resp. H), you're done. If not, subtract 6.

To program an example we assume that the two packed BCDs are in R2 and R3, R1 will hold the overflow, 
and R16 and R17 are available for calculations. R16 is the adding register for adding 0x66 (the register R2  
cannot add a constant value), R17 is used to correct the result depending from the different flags. Adding 
R2 and R3 goes like that:

LDI R16,0x66 ; for adding 0x66 to the result
LDI R17,0x66 ; for later subtracting from the result
ADD R2,R3 ; add the two two-digit-BCDs
BRCC NoCy1 ; jump if no byte overflow occurs
INC R1 ; increment the next higher byte
ANDI R17,0x0F ; don't subtract 6 from the higher nibble

NoCy1:
BRHC NoHc1 ; jump if no half-carry occurred
ANDI R17,0xF0 ; don't subtract 6 from lower nibble

NoHc1:
ADD R2,R16 ; add 0x66 to result
BRCC NoCy2 ; jump if no carry occurred
INC R1 ; increment the next higher byte
ANDI R17,0x0F ; don't subtract 6 from higher nibble

NoCy2:
BRHC NoHc2 ; jump if no half-carry occurred
ANDI R17,0xF0 ; don't subtract 6 from lower nibble

NoHc2:
SUB R2,R17 ; subtract correction

 A little bit shorter than that:

LDI R16,0x66
ADD R2,R16
ADD R2,R3
BRCC NoCy
INC R1
ANDI R16,0x0F

NoCy:
BRHC NoHc
ANDI R16,0xF0

NoHc:
SUB R2,R16

Question to think about: Why is that equally correct, half as long and less complicated and where is the  
trick? 
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Format conversion for numbers
All number formats can be converted to any other format. The conversion from BCD to ASCII and vice 
versa was already shown above (Bit manipulations). 

Conversion of packed BCDs to BCDs, ASCII or Binaries
Conversion of packed BCDs is not very complicated either. First we have to copy the number to another 
register. With the copied value we change nibbles using the SWAP instruction to exchange the upper and 
the lower one. The upper part is cleared, e. g. by ANDing with 0x0F. Now we have the BCD of the upper  
nibble and we can either use as is (BCD) or set bit 4 and 5 to convert it to an ASCII character. After that we 
copy the byte again and treat the lower nibble without first SWAPping and get the lower BCD.

A little bit more complicated is the conversion of BCD digits to a binary. Depending on the numbers to be 
handled we first clear the necessary bytes that will hold the result of the conversion. We then start with the  
highest BCD digit. Before adding this to the result we multiply the result with 10. (Note that in the first step 
this is not necessary, because the result is zero either).

In order to do the multiplication by 10, we copy the result to somewhere else. Then we multiply the result 
by four (two left shifts resp. rolls). Adding the previously copied number to this yields a multiplication with 5.  
Now a multiplication with 2 (left shift/roll) yields the 10-fold of the result. Finally we add the BCD and repeat  
that algorithm until all decimal digits are converted. If, during one of these operations, there occurs a carry 
of the result, the BCD is too large to be converted. This algorithm handles numbers of any length, as long 
as the result registers are prepared.

Conversion of Binaries to BCD
The conversion of a binary to BCDs is more complicated than that. If we convert a 16-bit-binary we can  
subtract 10,000 (0x2710), until an overflow occurs, yielding the first digit. Then we repeat that with 1,000 
(0x03E8) to yield the second digit. And so on with 100 (0x0064) and 10 (0x000A), then the remainder is  
the last digit. The constants 10,000, 1,000, 100 and 10 can be placed to the program memory storage in a 
word wise organized table, like this: 

DezTab:
.DW 10000, 1000, 100, 10

and can be read word-wise with the LPM instruction from the table.

An alternative is a table that holds the decimal value of each bit in the 16-bit-binary, e. g.

.DB 0,3,2,7,6,8

.DB 0,1,6,3,8,4

.DB 0,0,8,1,9,2

.DB 0,0,4,0,9,6

.DB 0,0,2,0,4,8 ; and so on until

.DB 0,0,0,0,0,1

Then you shift the single bits of the binary left out of the registers to the carry. If it is a one, you add the  
number  in  the  table  to  the  result  by  reading  the  numbers  from  the  table  using  LPM.  This  is  more 
complicated to program and a little bit slower than the above method.

A third method is to calculate the table value, starting with 000001, by adding this BCD with itself, each 
time after you have shifted a bit from the binary to the right, and added to the BCD result.

Many methods, much to optimize here.

Multiplication
Multiplication of binary numbers is explained here.

Decimal multiplication
In order to multiply two 8-bit-binaries we remind ourselves, how this is done with decimal numbers:

    1234 * 567 = ?

------------------------

    1234 *   7 =    8638

+   1234 *  60 =   74040

+   1234 * 500 =  617000

------------------------

    1234 * 567 =  699678

========================

In single steps decimal:
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• We multiply the first number with the lowest significant digit of the second number and add this to the 
result.

• We multiply the first number with 10 and then with the next higher digit of the second number and 
add this to the result.

• We multiply the first number with 100, then with the third-highest digit, and add this to the result.

Binary multiplication
Now in binary. Multiplication with the single digits is not necessary, because there are only the digits 1 (add 
the number) and 0 (don't add the number). Multiplication by 10 in decimal goes to multiplication by 2 in 
binary mode. Multiplication by 2 is done easily, either by adding the number with itself, or by shifting all bits 
one position left and writing a 0 to the void position on the right. You see that binary math is very much  
easier than decimal. Why didn't mankind use this from the beginning?

AVR-Assembler program
The following source code demonstrates realization of multiplication in assembler.

; Mult8.asm multiplies two 8-bit-numbers to yield a 16-bit-result
;
.NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc"
.LIST
;
; Flow of multiplication
;
; 1.The binary to be multiplicated with is shifted bitwise into the carry bit. If it is a one, the binary number is added to the
;    result, if it is not a one that was shifted out, the number is not added.
; 2.The binary number is multiplied by 2 by rotating it one position left, shifting a 0 into the void position.
; 3.If the binary to be multiplied with is not zero, the multiplication loop is repeated. If it is zero, the multiplication is done.
;
; Used registers
;
.DEF rm1 = R0 ; Binary number to be multiplicated (8 Bit)
.DEF rmh = R1 ; Interim storage
.DEF rm2 = R2 ; Binary number to be multiplicated with (8 Bit)
.DEF rel = R3 ; Result, LSB (16 Bit)
.DEF reh = R4 ; Result, MSB
.DEF rmp = R16 ; Multi purpose register for loading
;
.CSEG
.ORG 0000
;
        rjmp START
;
START:
        ldi rmp,0xAA ; example binary 1010.1010
        mov rm1,rmp  ; to the first binary register
        ldi rmp,0x55 ; example binary 0101.0101
        mov rm2,rmp  ; to the second binary register
;
; Here we start with the multiplication of the two binaries in rm1 and rm2, the result will go to reh:rel (16 Bit)
;
MULT8:
;
; Clear start values
        clr rmh ; clear interim storage
        clr rel ; clear result registers
        clr reh
;
; Here we start with the multiplication loop
;
MULT8a:
;
; Step 1: Rotate lowest bit of binary number 2 to the carry flag (divide by 2, rotate a zero into bit 7)
;
        clc ; clear carry bit
        ror rm2 ; bit 0 to carry, bit 1 to 7 one position to the right, carry bit to bit 7
;
; Step 2: Branch depending if a 0 or 1 has been rotated to the carry bit
;
        brcc MULT8b ; jump over adding, if carry has a 0
;
; Step 3: Add 16 bits in rmh:rml to the result, with overflow from LSB to MSB
;
        add rel,rm1 ; add LSB of rm1 to the result
        adc reh,rmh ; add carry and MSB of rm1
;
MULT8b:
;
; Step 4: Multiply rmh:rm1 by 2 (16 bits, shift left)
;
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        clc ; clear carry bit
        rol rm1 ; rotate LSB left (multiply by 2)
        rol rmh ; rotate carry into MSB and MSB one left
;
; Step 5: Check if there are still one's in binary 2, if yes, go on multiplicating
;
        tst rm2 ; all bits zero?
        brne MULT8a ; if not, go on in the loop
;
; End of the multiplication, result in reh:rel
;
; Endless loop
;
LOOP:
        rjmp loop

Binary rotation
For understanding the multiplication operation, 
it  is  necessary  to  understand  the  binary 
rotation  instructions  ROL  and  ROR.  These 
instructions  shift  all  bits  of  a  register  one 
position left (ROL) resp. right (ROR). The void 
position in the register is filled with the content 
of the carry bit in the status register, the bit that 
rolls out of the register is shifted to this carry 
bit. This operation is demonstrated using 0xAA 
as  an  example  for  ROL  and  0x55  as  an 
example for ROR.

Multiplication in the studio
The following screen shots show the multiplication program in the simulator (to make a difference: here  

Studio version 3). 

The  object-code  has  been 
opened,  the  cursor  is  placed 
on  the  first  executable 
instruction.  F11  does  single 
steps.
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The  registers  R0 and R2  are 
set to 0xAA and 0x55, our test 
binaries, to be multiplied.

 

R2  is  rotated  to  the 
right, to roll the least 
significant bit into the 
carry  bit.  0x55 
(0101.0101)  yielded 
0x2A (0010.1010).

 

Because the carry bit 
had  a  one,  the 
content  of  the 
registers  R1:R0  is 
added to the (empty) 
register  pair  R4:R3, 
resulting  in  0x00AA 
there.
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Now the register pair 
R1:R0 is rotated one 
position  left  to 
multiply  this  binary 
by 2.  From 0x00AA, 
multiplication  by  2 
yields 0x0154.

The  whole  multipli-
cation loop is repea-
ted  as  long  there  is 
at least one binary 1 
in register R2. These 
following  loops  are 
not shown here.

 

Using key F5 of the 
studio  we  multi-
stepped over these 
loops  to  a  break-
point at the end of 
the  multiplication 
routine.  The  result 
register pair R4:R3 
has  the  result  of 
the multiplication of 
0xAA  by  0x55: 
0x3872.

 

This wasn't that complicated, just remind yourself on the similar decimal operations. Binary multiplication is 
much easier than decimal.

Hardware multiplication
All ATmega, ATXmega, AT90CAN and AT90PWM have an on-board hardware multiplicator, that performs 
8 by 8 bit multiplications in only two clock cycles. So whenever you have to do multiplications and you are  
sure that this software never ever needs not to run on an AT90S- or ATtiny-chip, you can make use of this  
hardware feature.

The following shows how to multiply

● 8-by-8-binaries,

● 16-by-8-binaries,

● 16-by-16-binaries,

● 16-by-24-binaries.

Hardware multiplication of 8-by-8-bit binaries
The use is simple and straight-forward: if the two binaries to be multiplied are in the registers R16 and  
R17, just type
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mul R16,R17

As  the  result  of  these  two  8-bit 
binaries  might  be  up  two  16  bits 
long,  the  result  will  be  in  the 
registers R1 (most significant byte) 
and  R0  (least  significant  byte). 
That's all about it.

The  program demonstrates  the  simulation  in 
the Studio. It multiplies decimal 250 (hex FA) 
by decimal 100 (hex 64), in the registers R16 
and R17.

After  execution,  the 
registers  R0  (LSB)  and 
R1 (MSB) hold the result 
hex  61A8  or  decimal 
25,000.

And:  yes,  that  requires 
only  two  cycles,  or  2 
microseconds  with  a  1 
Mcs/s clock.

Hardware multiplication of a 16- by an 8-bit-binary
You have a larger binary to multiply? Hardware is limited to 8, so we need to invest some genius ideas  
instead.  To solve the problem with  larger  binaries,  we just  look  at  this  combination  of  16 and 8 first. 
Understanding this concept helps understanding the method, so you will be able to solve the 32-by-64-bit 
multiplication problem later.

First the math:  a 16-bit-binary m1M:m1L are simply  two 8-bit-binaries  m1M and m1L, where the most  
significant one m1M of these two is multiplied by decimal 256 or hex 100. (For those who need a reminder:  
the decimal 1234 is simply (12 multiplied by 100) plus 34, or (1 multiplied by 1000) plus (2 multiplied by  
100) plus (3 multiplied by 10) plus 4.

So the 16-bit-binary m1 is equal to 256*m1M 
plus m1L, where m1M is the MSB and m1L is 
the LSB. Multiplying m1 by 8-bit-binary m2 so 
is, mathematically formulated:

● m1 * m2 = (256*m1M + m1L) * m2, or

● 256*m1M*m2 + m1L*m2.

So we just need to do two multiplications and 
to  add  both  results.  Sorry,  if  you  see  three 

asterisks in the formula: the multiplication with 256 in the binary world doesn't require any hardware at all,  
because it is a simple move to the next higher byte. Just like the multiplication by 10 in the decimal world is  
simply moving the number one left and write a zero to the least significant digit.

So let's go to a practical example. First we need some registers to

● load the numbers m1 and m2,

● provide space for the result, which might have 24 bits length.

;
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; Test hardware multiplication 16-by-8-bit
;
; Register definitions:
;
.def Res1 = R2
.def Res2 = R3
.def Res3 = R4
.def m1L = R16
.def m1M = R17
.def m2 = R18

First we load the numbers:

;
; Load Registers
;
.equ m1 = 10000
;

ldi m1M,HIGH(m1) ; upper 8 bits of m1 to m1M
ldi m1L,LOW(m1) ; lower 8 bits of m1 to m1L
ldi m2,250 ; 8-bit constant to m2

The two numbers are loaded into R17:R16 (dec 10000 = hex 
2710) and R18 (dec 250 = hex FA).

Then we multiply the LSB first:

;
; Multiply
;

mul m1L,m2 ; Multiply LSB
mov Res1,R0 ; copy result to result register
mov Res2,R1

The LSB multiplication of hex 27 by hex FA yields hex 0F0A, 
written to the registers R00 (LSB, hex A0) and R01 (MSB, 
hex 0F). The result is copied to the lower two bytes of the 
result register, R3:R2.

Now the multiplication of the MSB of m1 with m2 follows:

mul m1M,m2 ; Multiply MSB

The multiplication of the MSB of m1, hex 10, with m2, hex FA, 
yields hex 2616 in R1:R0.

Now two steps are performed at once: multiplication by 256 
and adding the result to the previous result. This is done by 
adding  R1:R0 to Res3:Res2 instead of Res2:Res1. R1 can 
just be copied to Res3. R0 is added to Res2 then. If the carry 
is set after adding, the next higher byte Res3 is increased by 
one.

mov Res3,R1 ; copy MSB result to result byte 3
add Res2,R0 ; add LSB result to result byte 2
brcc NoInc ; if not carry, jump
inc Res3

NoInc:

The  result  in  R4:R3:R2  is  hex  2625A0,  which  is  decimal 
2500000 (as everybody knows), and is obviously correct.
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The cycle counter of the multiplication points to 10, at 1 MHz 
clock  a  total  of  10  microseconds.  Very  much  faster  than 
software multiplication!

Hardware multiplication of a 16- by a 16-bit-binary
Now that we have understood the principle, it should be easy to do 16-by-16. The result requires four bytes  
now (Res4:Res3:Res2:Res1, located in R5:R4:R3:R2). The formula is:

m1 * m2 = (256*m1M + m1L) * 

(256*m2M + m2L)

= 65536*m1M*m2M +

256*m1M*m2L +

256*m1L*m2M +

m1L*m2L

Obviously four multiplications now. We start with the first and the last as the two easiest ones: their results  
are simply copied to the correct result register positions. The results of the two multiplications in the middle  
of the formula have to be added to the middle of our result registers, with possible carry overflows to the 
most significant byte of the result. To do that, you will see a simple trick that is easy to understand. The  
software:

;
; Test Hardware Multiplication 16 by 16
;
; Define Registers
;
.def Res1 = R2
.def Res2 = R3
.def Res3 = R4
.def Res4 = R5
.def m1L = R16
.def m1M = R17
.def m2L = R18
.def m2M = R19
.def tmp = R20
;
; Load input values
;
.equ m1 = 10000
.equ m2 = 25000
;

ldi m1M,HIGH(m1)
ldi m1L,LOW(m1)
ldi m2M,HIGH(m2)
ldi m2L,LOW(m2)

;
; Multiply
;

clr R20 ; clear for carry operations
mul m1M,m2M ; Multiply MSBs
mov Res3,R0 ; copy to MSW Result
mov Res4,R1
mul m1L,m2L ; Multiply LSBs
mov Res1,R0 ; copy to LSW Result
mov Res2,R1
mul m1M,m2L ; Multiply 1M with 2L
add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp ; add carry
mul m1L,m2M ; Multiply 1L with 2M
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add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp

;
; Multiplication done
;

Simulation shows the following steps.

Loading the two constants 10000 (hex 2710) and 25000 (hex 
61A8) to the registers in the upper register space ...

Multiplying the two MSBs (hex 27 and 61) and copying the 
result  in  R1:R0  to  the  two  most  upper  result  registers 
R5:R4 ...

Multiplying the two LSBs (hex 10 and A8) and copying the 
result in R1:R0 to the two lower result registers R3:R2 ...

Multiplying the MSB of m1 with the LSB of m2 and adding the 
result  in R1:R0 to the result  register's two middle bytes, no 
carry occurred ...

Multiplying the LSB of m1 with the MSB of m2 and adding the 
result  in R1:R0 to the result  register's two middle bytes, no 
carry  occurred.  The  result  is  hex  0EE6B280,  which  is 
250000000 and obviously correct ...

Multiplication 
needed 19 clock cycles, which is very much faster than with 
software multiplication. Another advantage here: the required 
time is ALWAYS exactly 19 cycles, and it doesn't depend on 
the input numbers (like is the case with software multiplication 
and  on  overflow  occurrences  (thanks  to  our  small  trick  of 
adding zero with carry). So you can rely on this ...
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Hardware multiplication of a 16- by a 24-bit-binary
The  multiplication  of  a  16  bit 
binary "a" with a 24 bit binary "b" 
leads to results with up to 40 bit 
length.  The  multiplication 
scheme  requires  six  8-by-8-bit 
multiplications  and  adding  the 
results  to  the  appropriate 
position in the result registers.

The  assembler  source  code  for 
this:

; Hardware Multiplication 16 by 24 bit
.include "m8def.inc"
;
; Register definitions
.def a1 = R2 ; define 16-bit register
.def a2 = R3
.def b1 = R4 ; define 24-bit register
.def b2 = R5
.def b3 = R6
.def e1 = R7 ; define 40-bit result register
.def e2 = R8
.def e3 = R9
.def e4 = R10
.def e5 = R11
.def c0 = R12 ; help register for adding
.def rl = R16 ; load register
;
; Load constants
.equ a = 10000 ; multiplicator a, hex 2710
.equ b = 1000000 ; multiplicator b, hex 0F4240

ldi rl,BYTE1(a) ; load a
mov a1,rl
ldi rl,BYTE2(a)
mov a2,rl
ldi rl,BYTE1(b) ; load b
mov b1,rl
ldi rl,BYTE2(b)
mov b2,rl
ldi rl,BYTE3(b)
mov b3,rl

;
; Clear registers

clr e1 ; clear result registers
clr e2
clr e3
clr e4
clr e5
clr c0 ; clear help register

;
; Multiply

mul a2,b3 ; term 1
add e4,R0 ; add to result
adc e5,R1
mul a2,b2 ; term 2
add e3,R0
adc e4,R1
adc e5,c0 ; (add possible carry)
mul a2,b1 ; term 3
add e2,R0
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b3 ; term 4
add e3,R0
adc e4,R1
adc e5,c0
mul a1,b2 ; term 5
add e2,R0
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b1 ; term 6
add e1,R0
adc e2,R1
adc e3,c0



Avr-Asm-Tutorial 53 http://www.avr-asm-tutorial.net

adc e4,c0
adc e5,c0

;
; done.

nop
; Result should be hex 02540BE400

The complete execution requires

● 10 clock cycles for loading the constants,

● 6 clock cycles for clearing registers, and

● 33 clock cycles for multiplication.

Division
No, unfortunately there is no hardware division. You need to do this in software!

Decimal division
Again we start with the decimal division, to better understand the binary division. We assume a division of  
5678 by 12. This is done like this:

             5678 : 12 = ?
--------------------------
- 4 * 1200 = 4800
             ----
              878
- 7 *  120 =  840
              ---
               38
- 3 *   12 =   36
               --
                2
Result: 5678 : 12 = 473 Remainder 2
===================================

Binary division
In binary the multiplication of the second number in the above decimal example (4 * 1200, etc.) is not  
necessary, due to the fact that we have only 0 and 1 as digits. Unfortunately binary numbers have much  
more single digits than their decimal equivalent, so transferring the decimal division to its binary equivalent 
is a little bit inconvenient. So the program works a bit different than that.

The division of a 16-bit binary number by a 8-bit binary in AVR assembler is listed in the following section.

; Div8 divides a 16-bit-number by a 8-bit-number (Test: 16-bit-number: 0xAAAA, 8-bit-number: 0x55)
.NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc" ; adjust the correct path to your system!
.LIST
; Registers
.DEF rd1l = R0 ; LSB 16-bit-number to be divided
.DEF rd1h = R1 ; MSB 16-bit-number to be divided
.DEF rd1u = R2 ; interim register
.DEF rd2  = R3 ; 8-bit-number to divide with
.DEF rel  = R4 ; LSB result
.DEF reh  = R5 ; MSB result
.DEF rmp  = R16; multipurpose register for loading
;
.CSEG
.ORG 0
        rjmp start
start:
; Load the test numbers to the appropriate registers
        ldi rmp,0xAA ; 0xAAAA to be divided
        mov rd1h,rmp
        mov rd1l,rmp
        ldi rmp,0x55 ; 0x55 to be divided with
        mov rd2,rmp
; Divide rd1h:rd1l by rd2
div8:
        clr rd1u ; clear interim register
        clr reh  ; clear result (the result registers
        clr rel  ; are also used to count to 16 for the
        inc rel  ; division steps, is set to 1 at start)
; Here the division loop starts
div8a:
        clc      ; clear carry-bit
        rol rd1l ; rotate the next-upper bit of the number
        rol rd1h ; to the interim register (multiply by 2)
        rol rd1u
        brcs div8b ; a one has rolled left, so subtract
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        cp rd1u,rd2 ; Division result 1 or 0?
        brcs div8c  ; jump over subtraction, if smaller
div8b:
        sub rd1u,rd2; subtract number to divide with
        sec      ; set carry-bit, result is a 1
        rjmp div8d  ; jump to shift of the result bit
div8c:
        clc      ; clear carry-bit, resulting bit is a 0
div8d:
        rol rel  ; rotate carry-bit into result registers
        rol reh
        brcc div8a  ; as long as zero rotate out of the result registers: go on with the division loop
; End of the division reached
stop:
        rjmp stop   ; endless loop

Program steps during division
During execution of the program the following steps are ran: 

• Definition and preset of the registers with the test binaries,

• presetting  the  interim  register  and  the  result  register  pair  (the  result  registers  are  presetted  to 
0x0001! After 16 rotations the rolling out of the one stops further division steps.),

• the 16-bit-binary in rd1h:rd1l is rotated bitwise to the interim register rd1u (multiplication by 2), if a 1 
is rotated out of rd1u, the program branches to the subtraction step in step 4 immediately,

• the content  of the interim register  is  compared with the 8-bit  binary in rd2,  if  rd2 is smaller  it  is 
subtracted from the interim register and the carry-bit is set to one, if rd2 is greater the subtraction is 
skipped and a zero is set to the carry flag,

• the content of the carry flag is rotated into the result register reh:rel from the right,

• if a zero rotated out of the result register, we have to repeat the division loop, if it was a one the  
division is completed.

If you don't understand rotation yet you'll find this operation discussed in the multiplication section. 

Division in the simulator
The following screen shots demonstrate the 
program steps in the studio (here in version 
3, so it looks different). To do this, you have 
to assemble the source code and open the 
resulting object file in the studio. 

The  object  code  has  been  started,  the 
cursor  (yellow  arrow)  is  on  the  first 
executable  instruction.  The  key  F11 
performs single steps.

 

The test binaries 0xAAAA and 
0x55,  to  be  divided,  have 
been  written  to  the  registers 
R1:R0 and R3.
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The  interim  register  R2  and 
the result register pair are set 
to their predefined values.

R1:R0 was rotated left to R2, 
from  0xAAAA  the  doubled 
value  of  0x015554  was 
yielded.

No  overflow  from  rotation 
into  carry has  occurred and 
0x01 in R2 was smaller than 
0x55  in  R3,  so  subtraction 
was  skipped.  A  zero  in  the 
carry is rotated into the result 
register  R5:R4.  The  former 
content of the result register, 
a  single  1-bit  in  position  0 
has  rotated  to  position  1 
(content now: 0x0002). As a 
zero was  rotated  out  of  the 
result  register  pair,  the next 
step  to  be  executed  is  a 
branch  to  the  beginning  of 

the  division  loop  start 
and the loop is repeated.

After  executing  the  loop 
16  times  we  have 
reached  the  breakpoint 
set  at  the  end  of  the 
division  routine.  The 
result  register  in  R5:R4 
holds  0x0202,  the result 
of  the  division.  The 
registers  R2:R1:R0  are 
empty,  so  we  do  not 
have a remainder  left.  If 
a remainder  would have 
been  resulted  we  can 
use it  to decide whether 
an incrementation of the 
result should take place, 
rounding of the result up. 
This  step  is  not  coded 
here.
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The whole division needs 60 micro-seconds 
processor time (open a processor  view in 
the studio menu). A rather long time for a 
division.

 

 

Number conversion
Number conversion routines are not included here. Please refer to the website at 

http://www.avr-asm-tutorial.net/avr_en

if you need the source code or a better understanding.

Decimal Fractions
First: Do not use any floating points, unless you really need them. Floating points are resource killers in an 
AVR, lame ducks and need extreme execution times. Run into this dilemma, if you think assembler is too 
complicated, and you prefer Basic or other languages like C or Pascal.

Not so, if you use assembler. You'll be shown here, how you can perform the multiplication of a fixed point  
real number in less than 60 micro-seconds, in special cases even within 18 micro-seconds, at 4 MHz clock 
frequency. Without any floating point processor extensions and other expensive tricks for people too lazy  
to use their brain.

How to do that? Back to the roots of math! Most tasks with floating point reals can be done using integer  
numbers. Integers are easy to program in assembler and perform fast. The decimal point is only in the 
brain of the programmer, and is added somewhere in the decimal digit stream. No one realizes, that this is  
a trick.

Linear conversions
As an example the following task: an 8-Bit-AD-Converter measures an input signal in the range from 0.00  
to 2.55 Volt, and returns as the result a binary in the range from $00 and $FF. The result, a voltage, is to  
be displayed on a LCD display. Silly example, as it is so easy: The binary is converted to a decimal ASCII  
string between 000 and 255, and just behind the first digit the decimal point has to be inserted. Done!

The electronics world sometimes is more complicated. E. g., the AD-Converter returns an 8-Bit-Hex for  
input voltages between 0.00 and 5.00 Volt. Now we're tricked and do not know how to proceed. To display  
the correct result on the LCD we would have to multiply the binary by 500/255, which is 1.9608. This is a  
silly number, as it is almost 2, but only almost. And we don't want that kind of inaccuracy of 2%, while we 
have an AD-converter with around 0.25% accuracy.

To cope with this, we multiply the input by 500/255*256 or 501.96 and divide the result by 256. Why first 
multiply by 256 and then divide by 256? It's just for enhanced accuracy. If we multiply the input by 502 
instead of 501.96, the error is just in the order of 0.008%. That is good enough for our AD-converter, we 
can live with that. And dividing by 256 is an easy task, because it is a well-known power of 2. By dividing  
with numbers that are a power of 2, the AVR feels very comfortable and performs very fast. By dividing 
with 256, the AVR is even faster, because we just have to skip the last byte of the binary number. Not even  
shift and rotate!

The multiplication of an 8-bit-binary with the 9-bit-binary 502 (hex 1F6) can have a result larger than 16 
bits. So we have to reserve 24 bits or 3 registers for the result. During multiplication, the constant 502 has  
to be shifted left (multiplication by 2) to add these numbers to the result each time a one rolls out of the 
shifted input number. As this might need eight shifts left, we need further three bytes for this constant. So  
we chose the following combination of registers for the multiplication: 

Number Value (example) Register

Input value 255 R1

Multiplicand 502 R4 : R3 : R2

Result 128,010 R7 : R6 : R5

After  filling the value 502 (00.01.F6) to R4 : R3 : R2 and clearing the result  registers R7 : R6 : R5,  the 
multiplication goes like this: 

http://www.avr-asm-tutorial.net/avr_en
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1. Test, if the input number is already zero. If yes, we're done.

2. If no, one bit of the input number is shifted out of the register to the right, into the carry, while a zero  
is stuffed into bit 7. This instruction is named Logical-Shift-Right or LSR.

3. If the bit in carry is a one, we add the multiplicand (during step 1 the value 502, in step 2 it's 1004, 
a. s. o.) to the result. During adding, we care for any carry (adding R2 to R5 by ADD, adding R3 to  
R6 and R4 to R7 with the ADC instruction!). If the bit in the carry was a zero, we just don't add the 
multiplicand to the result and jump to the next step.

4. Now the multiplicand is multiplied by 2, because the next bit shifted out of the input number is worth 
double as much. So we shift R2 to the left (by inserting a zero in bit 0) using LSL. Bit 7 is shifted to 
the carry. Then we rotate this carry into R3, rotating its content left one bit, and bit 7 to the carry. The 
same with R4.

5. Now we're done with one digit of the input number, and we proceed with step 1 again.

 

The result of the multiplication by 502 now is in the result registers R7 : R6 : R5. If we just ignore register 
R5 (division by 256), we have our desired result. To enhance accuracy, we can use bit 7 in R5 to round the 
result. Now we just have to convert the result from its binary form to decimal ASCII (see Conversion bin to  
decimal-ASCII on the website). If we just add a decimal point in the right place in the ASCII string, our 
voltage string is ready for the display. 

The whole program, from the input number to the resulting ASCII string, requires between 79 and 228  
clock cycles, depending from the input number. Those who want to beat this with the floating point routine 
of a more sophisticated language than assembler, feel free to mail me your conversion time (and program 
flash and memory usage).

Example 1: 8-bit-AD-converter with fixed decimal output
; Demonstrates floating point conversion in Assembler, (C)2003 www.avr-asm-tutorial.net
;
; The task: You read in an 8-bit result of an analogue-digital-converter, number is in the range from hex 00 to FF.
;    You need to convert this into a floating point number in the range from 0.00 to 5.00 Volt
; The program scheme:
;    1. Multiplication by 502 (hex 01F6).That step multiplies by 500, 256 and divides by 255 in one step!
;    2. Round the result and cut the last byte of the result. This step divides by 256 by ignoring the last byte of the result.
;        Before doing that, bit 7 is used to round the result.
;    3. Convert the resulting word to ASCII and set the correct decimal sign. The resulting word in the range from 0 to 500
;        is displayed in ASCII-characters as 0.00 to 5.00.
; The registers used:
;    The routines use the registers R8..R1 without saving these before. Also required is a multipurpose register called rmp,
;    located in the upper half of the registers. Please take care that these registers don't conflict with the register use in the
;    rest of your program.
;    When entering the routine the 8-bit number is expected in the register R1. The multiplication uses R4:R3:R2 to hold
;    the multiplicator 502 (is shifted left max. eight times during multiplication). The result of the multiplication is calculated
;    in the registers R7:R6:R5. The result of the so called division by 256 by just ignoring R5 in the result, is in R7:R6. R7:R6
;    is rounded, depending on the highest bit of R5, and the result is copied to R2:R1.
;    Conversion to an ASCII-string uses the input in R2:R1, the register pair R4:R3 as a divisor for conversion, and places the
;    ASCII result string to R5:R6:R7:R8 (R6 is the decimal char).
; Other conventions:
;   The conversion uses subroutines and the stack.The stack must work fine for the use of three levels (six bytes SRAM).
; Conversion times:
;   The whole routine requires 228 clock cycles  maximum (converting $FF), and 79 clock cycles minimum (converting $00).
;    At 4 MHz the times are 56.75 microseconds resp. 17.75 microseconds.
; Definitions:
;   Registers
.DEF rmp = R16 ; used as multi-purpose register
;   AVR type: Tested for type AT90S8515, only required for stack setting, routines work fine with other AT90S-types also
.NOLIST
.INCLUDE "8515def.inc"
.LIST
; Start of  test program
; Just writes a number to R1 and starts the conversion routine, for test purposes only
.CSEG
.ORG $0000
        rjmp main
main:
        ldi rmp,HIGH(RAMEND) ; Set the stack
        out SPH,rmp
        ldi rmp,LOW(RAMEND)
        out SPL,rmp
        ldi rmp,$FF ; Convert $FF
        mov R1,rmp
        rcall fpconv8 ; call the conversion routine
no_end:   ; unlimited loop, when done
        rjmp no_end
; Conversion routine wrapper, calls the different conversion steps
fpconv8:
        rcall fpconv8m ; multiplicate by 502
        rcall fpconv8r ; round and divide by 256
        rcall fpconv8a ; convert to ASCII string
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        ldi rmp,'.' ; set decimal char
        mov R6,rmp
        ret ; all done
; Subroutine multiplication by 502
fpconv8m:
        clr R4 ; set the multiplicant to 502
        ldi rmp,$01
        mov R3,rmp
        ldi rmp,$F6
        mov R2,rmp
        clr R7 ; clear the result
        clr R6
        clr R5
fpconv8m1:
        or R1,R1 ; check if the number is all zeros
        brne fpconv8m2 ; still one's, go on convert
        ret ; ready, return back
fpconv8m2:
        lsr R1 ; shift number to the right (div by 2)
        brcc fpconv8m3 ; if the lowest bit was 0, then skip adding
        add R5,R2 ; add the number in R6:R5:R4:R3 to the result
        adc R6,R3
        adc R7,R4
fpconv8m3:
        lsl R2 ; multiply R4:R3:R2 by 2
        rol R3
        rol R4
        rjmp fpconv8m1 ; repeat for next bit
; Round the value in R7:R6 with the value in bit 7 of R5
fpconv8r:
        clr rmp ; put zero to rmp
        lsl R5 ; rotate bit 7 to carry
        adc R6,rmp ; add LSB with carry
        adc R7,rmp ; add MSB with carry
        mov R2,R7 ; copy the value to R2:R1 (divide by 256)
        mov R1,R6
        ret
; Convert the word in R2:R1 to an ASCII string in R5:R6:R7:R8
fpconv8a:
        clr R4 ; Set the decimal divider value to 100
        ldi rmp,100
        mov R3,rmp
        rcall fpconv8d ; get ASCII digit by repeated subtraction
        mov R5,rmp ; set hundreds string char
        ldi rmp,10 ; Set the decimal divider value to 10
        mov R3,rmp
        rcall fpconv8d ; get the next ASCII digit
        mov R7,rmp ; set tens string char
        ldi rmp,'0' ; convert the rest to an ASCII char
        add rmp,R1
        mov R8,rmp ; set ones string char
        ret
; Convert binary word in R2:R1 to a decimal digit by substracting the decimal divider value in R4:R3 (100, 10)
fpconv8d:
        ldi rmp,'0' ; start with decimal value 0
fpconv8d1:
        cp R1,R3 ; Compare word with decimal divider value
        cpc R2,R4
        brcc fpconv8d2 ; Carry clear, subtract divider value
        ret ; done subtraction
fpconv8d2:
        sub R1,R3 ; subtract divider value
        sbc R2,R4
        inc rmp ; up one digit
        rjmp fpconv8d1 ; once again
; End of conversion test routine
 

Example 2: 10-bit-AD-converter with fixed decimal output
This example is a bit more complicated. Refer to the website if you need it.
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Floating point numbers in assembler language

Floating points, if necessary
Those who want to make life more complicated than necessary: besides whole numbers (integers), signed  
integers  and  fixed  dot  numbers  floating  point  numbers  are  available.  What  comes  in  higher-level  
languages simply as 1.234567 is rather complicated in assembler. And that comes as follows. 

The format of floating point numbers
Binary floating points consist of two constituents: 

1. a mantissa, and 
2. an exponent. 

In the decimal world the mantissa gives the normal number part, in 1.234567 this is the 1.234567. The 
precision of the number is given by the seven digits. The exponent says how often the mantissa has to be  
multiplied by 10 (the base in the decimal world). In our example this would be a zero. The number could  
also be written as 0.1234567*101 or shorter as 0.1234567E+01, which says: shift the mantissa one time 
left. It could also be written as 12.34567E-01 to say: shift the mantissa one time right. The formulation 
1.234567E+00 is called normalized in that it 

• it has only one single digit left of the dot, and 
• this digit is not zero. 

Numbers  larger  than  9.999999  are 
repeatedly  divided  by  10,  by  that 
increasing  the  exponent.  Numbers 
smaller than 1 are repeatedly multiplied 
by 10, by that decreasing the exponent. 
Numbers  smaller  than  one  have  a 
negative  exponent.  That  is  why  the 
exponent has to be a signed integer. 

Numbers  themselves  also  can  be 
negative, such as -1.234567. Because 
multiplying  and  dividing  does  not 
change  the  sign,  the  mantissa  also 
needs  a  sign  bit.  So  we  can  handle 
positive as well  as negative numbers, 
such as -182.162°C as the boiling point 
of  oxygen.  Of  course  we'll  have  to 
divide this boiling point by 100 to get a 
normalized mantissa, and its exponent 
will be plus two. Normalized we'll get -
1.82162E+02 for that boiling point. 

Converted to the binary world, where the base is 2, the floating point numbers need at least two bytes: one  
for  the mantissa  and one for  the  exponent.  Both  are  signed  integers.  The meaning  of  one bit  in  the  
mantissa and one bit in the exponent is very different: 

1. In the mantissa each bit, starting from the dot, or better: from its highest non-sign-bit, stands for 1 
divided by 2, powered by n, where n is its position in the mantissa. So the first bit is 1 / 2^1 = 1 / 2,  
or in decimal 0.5. Each further bit stands for half of the previous bit, so the next in the line is 0.25,  
the over-next is 0,125 etc. etc. 

2. The  exponent  is  simpler  to  understand:  in  an  8-bit  exponent  it  reaches  from  zero  to  127 
(hexadecimal 0x00 to 0x7F) for positive exponents and from -1 to -128 (hexadecimal 0xFF for -1, 
0x80 for -128) for negative exponents. This says that for each positive number the mantissa has to 
be shifted n positions to the left,  for negative ones shifted one position to the right.  A left  shift  
means multiplying the mantissa by two, right shift a division by two. 

Because the exponent shifts the number by its power of two (* 2 ^), each bit of it is more powerful than a bit  
in the mantissa. So 2^127 is 1.7-multiplied by-10-power-38 or 1.7*1038 or even shorter 1.7E38. Vice versa, 
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negative exponents make the exponent part of the number very small: 2^-128 is decimal 2.9E-39. With 
eight bit exponent only we can cover the range of numbers between 2.9E-39 to 1.7E+38. That should be  
enough large or small, not for an astronomer but for most of the rest of the calculating mankind. So an 8-bit  
exponent is sufficient.

Very small are the variations that come with the mantissa: as can be seen from an 8-bit mantissa's 0x7F  
that its decimal value is only 0.992 and by only 0.008 below the one. So we can one handle numbers with 
slightly more than two digit (2 1/2) precision in an 8-bit mantissa. By far not enough for calculating interest  
rates or other commercial stuff or in engineering, only suitable for rather rough technical measurements. 8-
bit mantissa's are of the same accuracy as an ancient slide rule (for those who are still familiar with that 
kind of calculating machines). 

To increase the precision we add additional eight bits to the mantissa. The lowest of the mantissa's bits  
stands now for 0.0000305. This increases the precision to slightly more than four digits. If we would add  
another byte to the mantissa we are at slightly more than six decimal digits, the complete number has 
already 32 bits or four bytes. 16-bit mantissas are not precise enough to calculate Mandelbrot-sets, but are  
suitable for most technical applications. 

If you need higher resolutions, pick a needed 
style from this table. 

Because  one  additional  mantissa  bit  can 
increase precision by roughly  a half  decimal 
digit, the inventors of binary floats increased it 
by  one  with  a  trick:  because  a  normalized 
binary mantissa always starts with a one, this 
bit  can be skipped and an additional  bit  fits 
into  the  16  bit  mantissa  at  the  end.  These 
kind of tricks increase the variability of floating 
number formats and make it more and more 
complicated to understand: of course the skipped one-bit on top has to be added when calculating with the 
mantissa. It can replace the mantissa's sign bit, if that bit sign bit is stored elsewhere. 

An advantage do those floats have: they simplify the multiplication and division of two floats. If we have to 
multiply two floats with their mantissas M1 and M2, we can simply multiply the two mantissas and, even  
more simple, add their two exponents E1 and E2. When dividing, we have to subtract E2 from E1. 

The simplification when multiplying is associated by a higher effort when adding or subtracting. Before we 
can add the two mantissas we have to bring their exponents to the same value (by shifting the mantissa of  
the smaller number to the right). Only when both are equal, we can add both mantissas. 

Conversion of binary to decimal number format
To demonstrate that handling binary float numbers is rather extensive, I have shown the conversion of a  
24-bit float with a 16-bit mantissa in detail. The software for doing that has 410 code lines and needs a few  
milli-seconds  in  an  AVR.  How  this  is  done  is  documented  on  this  page  here.  If  you  want  to  learn 
assembler: this is a more high-level example, with lots of pointers. I hope that you enjoy the understanding 
of a more complex task. 

Conclusion:

Those who are clever and do not need numbers up to 1038 (or even larger) avoid floats and rather use 
integers or fixed floating  point  numbers (Pseudo-floats).  Those are by far simpler  to handle,  easier  to  
understand and it is rather simpler to adjust their precision to the given practical needs. 

Converting floating point numbers to decimal in 
assembler language
To convert floating point  binaries into decimal  (ASCII)  numbers we need, of course, some binary and  
exponential  math. If you are weak in both disciplines and if you are lazy, do not try to understand the  
following, pick a floating point library instead. If you really want to know how it works: go on reading, it is  
not too complicated to understand. 

Allocation of numbers
As has been shown on the previous pages, a 24-bit binary consists of 16 bits for the mantissa and of 8 bits  
for the exponent. Both components take their most significant bit as sign. We can easily store these two 
components in three bytes, e. g. in three registers of the AVR. 

The decimal resolution of such a binary number is 4 1/2 digits. To convert these back to decimal we need 
some more space as each digit needs one byte. So we better place the decimal result, together with some 
interim numbers that are needed during conversion to the SRAM, so we do not need to mess around with 
register  needs  and  shortages.  You  can  also  increase  the  resolution  simply  by  extending  the  SRAM 
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reservation, and the software adds more steps. 

15 bits mantissa in binary format corresponds with five decimal digits (215 = 32,768). The format of the 
result is as follows: 

We need the mantissa's sign bit (if positive we use a blank), the normalized first digit, then the decimal dot, 
four significant and one insignificant digits, then the E, the exponent's sign (+ or -) and two exponent digits. 
In total we are at 12 bytes result. 

So this is the space that should be reserved for the result. To reserve space for that in assembler, we 
write: 

.dseg

.org SRAM_START
DecAsc:
  .byte 12 ; Reserve 12 bytes for result

The conversion involves adding decimal numbers with 

• a resolution of six digits, so we can handle more precision than needed, 
• an additional space for three further digits, with which we can do the rounding at the end, 
• to the left we add another digit to allow for overflows when multiplying the decimal by two during 

conversion of the binary exponent. 

So we are at 10-digit numbers for handling the decimal digits. We will need two buffers for that: one for  
calculation of the mantissa's value and one to prepare the adders of the mantissa's bits. We add some 
space to place those numbers on the beginning of a line in SRAM to ease reading in simulation, but can  
leave these reservations aside when space gets scarce. Our SRAM space now looks like this: 

.dseg

.org SRAM_START

.equ MantLength = 10
sMant:
  .byte MantLength
sMantEnd:
  .byte 16-MantLength 
sAdder:
  .byte MantLength
sAdderEnd:
  .byte 16-MantLength
sDecAsc:
  .byte 12

The two End: labels are for checking if the end has been reached, or, in case we have to start from the 
end of the number, to place a pointer right behind the number. 

A basic decision is to handle the calculations in simple binary format, where 0 to 9 are handled as binaries  
0 to 9. This requires one byte per digit and does not involve the H flag (in case of packed BCD) or the  
ASCII format bits when handling ASCII numbers. This is much simpler than in other formats, but needs 
slightly more time. 

In the first step we init the stackpointer, because we use subroutines. 

The second step is to get rid of the mantissa's 
sign bit. If  bit  7 of the mantissa is zero we can 
skip the following. If it is one we subract the LSB 
from  zero  and  invert  the  MSB.  This  makes  a 
positive number from the negative. The decimal 
mantissa, and also the adder space, with its eight bytes each now look like this. 

Converting the mantissa to decimal

Conversion starts with bit 14 of the binary mantissa. As this bit is always a one, we can skip this by setting 
the result as well as the adder to 0.50000000. We would formulate this in assembler as follows: 

; Initiate the decimal mantissa
InitMant:
  ldi ZH,High(sMant) ; Point Z to mantissa space, MSB
  ldi ZL,Low(sMant) ; dto., LSB
  clr rmp ; Clear the complete mantissa space
  ldi rCnt,MantLength
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InitMant1:
  std Z+dAddMant,rmp ; Clear the adder
  st Z+,rmp ; Clear the mantissa
  dec rCnt ; At the end?
  brne InitMant1
  ldi rmp,5 ; Start with bit 15
  sts sMant+2,rmp ; Set start value, Mantissa
  sts sAdder+2,rmp ; and adder
  ret

Note that both buffers are filled simultanously with the use of the STD instruction. At the end the two STS 
instructions set the 5 to the right place in both buffers. 

The init process has been executed in the simulator avr_sim. Both numbers are set to 0.5 now. 

The next step is to divide the decimal adder by two to get 
the adder for bit 13. Procedure starts with the 5 in the buffer 
and proceeds over the whole buffer length. If the division 
by two leaves a remainder (as is already the case with the 
first digit 5 / 2 = 2, remainder = 1), 10 has to be added to 
the next digit. The division by two is a simple task, as the 
whole algorithm goes like this: 

; Divide the adder by two
DivideBy2:
  ldi ZH,High(sAdder+1) ; Point to end of the adder, MSB
  ldi ZL,Low(sAdder+1)
  clc ; Clear carry for overflows
  ldi rCnt,MantLength-2 ; Mantissa length minus one to counter
DivideBy2a:
  ld rmp,Z ; Read byte from adder
  brcc DivideBy2b ; Carry is not set, don't add 10
  subi rmp,-10 ; Add ten
DivideBy2b:
  lsr rmp ; Divide by two
  st Z+,rmp ; Store division result
  dec rCnt ; Count down
  brne DivideBy2a
  ld rmp,Z ; Read last byte from adder
  lsr rmp ; Divide by 2
  st Z,rmp
  brcc Divideby2e
  inc rmp ; Round last digit up
Divideby2c:
  st Z,rmp ; Correct last digit
  subi rmp,10 ; Digit > 10?
  brcs DivideBy2e ; Nope
DivideBy2d:
  st Z,rmp ; Correct last digit
  ld rmp,-Z ; Read pre-last digit
  inc rmp ; Increase digit
  st Z,rmp ; and store
  subi rmp,10 ; Check digit >= 10
  brcc DivideBy2d ; Yes, repeat
DivideBy2e:
  ret

These show the simulation of the first two divisions of the adder. 

../../../9_websites/gsc-da/html/avr-asm/avr_sim/index_en.html
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The special here is to increase the last digit if the division of the last digit shifted a one out to carry. In that  
case the last digit (as accessible with ld R16,-Z) has to be increased. If that yields equals or more than ten  
(subi R16,10 does not set the carry flag), the overflow has to go back to the previous byte. This has to  

be repeated with all previous digits until the  INC does not lead to a digit reaching or exceeding 10 any 
more. 

To the upper right is the next step seen: if the respective mantissa bit is one, the divided adder has to be  
added to the decimal mantissa. When adding, the procedure starts at the end of the mantissa and adder 
buffer and proceeds to the left of the buffer. Each digit has to be checked if, by adding the adder byte and 
the carry, the 10 has been reached or exceeded. If so, ten has to be subtracted and this overflow has to be  
added to the next digit. 

If the mantissa bit is not one, then the next division takes place without adding. The source code for this is 
here: 

; Add the adder to the decimal mantissa
MantAdd:
  ldi ZH,High(sMantEnd) ; Point Z to decimal mantissa, MSB
  ldi ZL,Low(sMantEnd) ; dto., LSB
  ldi rCnt,MantLength-1 ; Mantissa length to R16
  clc ; Start with carry clear
MantAdd1:
  ld rmp,-Z ; Read last mantissa byte
  ldd rmp2,Z+dAddMant ; Read corresponding adder byte
  adc rmp,rmp2 ; Add both with carry
  st Z,rmp ; Store in SRAM
  subi rmp,10 ; Subtract 10
  brcs MantAdd2 ; Carry set, smaller than 10
  st Z,rmp ; Overwrite digit
  sec ; Set carry for next digit
  rjmp MantAdd3 ; Count down
MantAdd2:
  clc ; Clear carry for next adding
MantAdd3:
  dec rCnt ; Count down
  brne MantAdd1 ; Not yet complete
  ret
This  shows  the  treatment  of  all  15  bits  of  the mantissa:  dividing  in  any  case,  and adding  only  if  the  
mantissa bit is one. Here shown for a mantissa of 0x5555, where every second bit is set one. 
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Converting 
the 
exponent 
bits
These  are  the 
three 
components  we 
need for handling 
the exponent: 

1. the mantissa, as derived previously, 
2. the decimal exponent, that starts with zero and increases or decreases when applying the binary 

exponent, and 
3. the binary exponent that is to be applied to the mantissa, that can be between -128 and +127, in 

our example it is four. 

First of all: the decimal mantissa is not normalized: its first digit is a zero and should be a non-zero number. 
The routine Normalize: normalizes this number: 

• If the overflow-digit in position 0 is not zero, it shifts the complete number once to the right. 
• If the first decimal digit in position 1 is zero, it shifts the complete number one or more positions to 

the left. 

Each shifting changes the decimal exponent accordingly: shifts to the right increase the exponent while 
shifts to the left decrease it. 

This shows the first normalization: a shift to the left. Note that the decimal exponent has now become 
negative (bit 7 is one). 

The source code for normalization: 
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; Normalize the decimal mantissa
Normalize:
  lds rmp,sMant ; Read mantissa overflow byte
  tst rmp ; Not zero?
  brne NormalizeRight ; Shift to the right
Normalize1:
  lds rmp,sMant+1 ; Read the first digit
  tst rmp ; Zero?
  breq NormalizeLeft ; If yes, shift left
  ret ; No normalization necessary
  ; Shift exponent one position left
NormalizeLeft:
  ldi ZH,High(sMant+1) ; Point to first digit, MSB
  ldi ZL,Low(sMant+1) ; dto., LSB
  ldi rCnt,MantLength-2 ; Shift counter
NormalizeLeft1:
  ldd rmp,Z+1 ; Read the next byte
  st Z+,rmp ; Copy it to the current position
  dec rCnt ; Count down
  brne NormalizeLeft1 ; Additional bytes to move
  clr rmp ; Clear the last digit
  st Z,rmp ; in the last buffer
  dec rDecExp ; Decrease decimal exponent
  rjmp Normalize1 ; Check if further shifts necessary
  ; Shift number to the right
NormalizeRight:
  ldi ZH,High(sMantEnd-1) ; Place Z to the end, MSB
  ldi ZL,Low(sMantEnd-1) ; dto., LSB
  ldi rCnt,MantLength-1 ; Counter for digits
NormalizeRight1:
  ld rmp,-Z ; Read digit left
  std Z+1,rmp ; Store one position to the right
  dec rCnt ; Count down
  brne NormalizeRight1 ; Furchter digits
  clr rmp ; Clear the first digit (overflow digit)
  st Z,rmp
  inc rDecExp ; Increase decimal exponent
  ret

The decimal mantissa has been shifted one position to the left and is now normalized. 

As the binary exponent is four, now the mantissa has to be multiplied by two. This decreases the binary  
exponent by one. 

The source code for multiplication by 2 is the following: 

; Multiply number by 2
Multiply2:
  ldi ZH,High(sMantEnd) ; Z to end of mantissa, MSB
  ldi ZL,Low(sMantEnd) ; dto., LSB
  ldi rCnt,MantLength ; Over the complete length
  clc ; No carry on start
Multiply2a:
  ld rmp,-Z ; Read last digit
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  rol rmp ; Multiply by 2 and add carry
  st Z,rmp ; Overwrite last digit
  subi rmp,10 ; Subtract 10
  brcs Multiply2b ; Carry set, smaller than 10
  st Z,rmp ; Overwrite last digit
  sec ; Set carry for next higher digit
  rjmp Multiply2c ; To count down
Multiply2b:
  clc ; Clear carry for next higher digit
Multiply2c:
  dec rCnt ; Count down
  brne Multiply2a ; Further digits to process
  ret

This is the simulated multiplication by 2. Note that the overflow byte is at one now, so following each 
multiplication a check whether another normalization has to be performed. If so, a right-shift is performed 
to normalize the decimal mantissa again. 

The same happens if the binary exponent is negative (bit 7 = one). In that case the mantissa has to divided 
by two and the normalization check should repair any losses of the first digit, by shifting the mantissa one 
or more positions to the left. 

These steps are repeated until the binary exponent reaches zero. 

Rounding the decimal mantissa

We reserved the three last (insignificant) digits for the repeated shifting in the previous phase, but now we  
use them for rounding the result. To do that we add 0.00000555 to our interim result. This should round 
these three digits sufficiently. 

; Round the mantissa up
RoundUp:
  ldi ZH,High(sMantEnd)
  ldi ZL,Low(sMantEnd)
  ldi rmp2,5
  ldi rCnt,3
  clc
RoundUp1:
  ld rmp,-Z
  adc rmp,rmp2
  st Z,rmp
  subi rmp,10
  brcs RoundUp2
  st Z,rmp
  sec
  rjmp RoundUp3
RoundUp2:
  clc
RoundUp3:
  dec rCnt
  brne RoundUp1
  ldi rmp2,0
  ldi rCnt,MantLength-3
RoundUp4:
  ld rmp,-Z
  adc rmp,rmp2
  st Z,rmp
  subi rmp,10
  brcs RoundUpRet
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  dec rCnt
  brne RoundUp4
  rcall Normalize
RoundUpRet:
  ret

Note that, under rare circumstances, rounding can lead to an overflow even to the byte 0. Therefore we  
finally have to check if an additional normalization is necessary. This is not the case if the up-rounding  
chain ends already in a lower byte position. 

With that we have our float now complete for its conversion to ASCII format. 

Conversion from BCD to ASCII

All numbers in our decimal are BCDs. We have to add 0x30 (or subtract -'0') to get ASCII characters. Of  
course we'll have to add 

1. the sign of the decimal mantissa, if it is negative (a blank if otherwise), 
2. the decimal dot, 
3. if the decimal exponent is not zero, we'll have to add E, the sign of the decimal exponent, and the 

exponent in two-digit format. If not we add four blanks. 

Execution times
If you are short in time, because your AVR has more urgent things to do than converting floats to decimals:  
here are the execution times. 

The complete procedure needs roughly the following times: 

Mantissa Exponent Duration

0x4000

0x00 448 µs

0x01 668 µs

0x02 816 µs

0x10 2.15 ms

0x7F 23.2 ms

0xFFFF

0x00

449 µs

0x5555 2.88 ms

0x7FFF 3.87 ms

The cases with negative mantissas or exponents are not differing much from the positive cases as there  
are only two additional instructions (a NEG and a COM). 

If you need the assembler source code (419 lines) for own experiments or extensions to 32/40/48/56/64 bit 
floats, here is it: float_conv16.asm. 

Faster than above: converting a 40-bit-binary to decimal
This above was not very effective because we used lots of slow SRAM and used a whole byte per decimal  
digit. The following shows the more effective way to do conversion of a 40-bit-binary, consisting of 32 bits  
mantissa and 8 bits exponent, to a decimal. With the above method this would last at least 50 ms, so we 
need a faster method for this. 

We do that in the following way: 

1. It first converts the 32-bit mantissa to an integer value. Because a 32 bit binary can hold decimal  
numbers of up to 4 billion and hence with 10 digits accuracy, we need an integer that can hold up 
to five bytes, but as we will have some overflow during multiplications, we use six bytes. For each 
of the 32 mantissa bits, the decimal representation of the weight of this bit is added to the result.  
Again, like demonstrated above, we start with 0.5, which is decimal 50.000.000.000 or hexadecimal 
0B,A4,3B,74,00. These five bytes are repeatedly divided by two to get the next bit's weight factor  
as decimal. If the mantissa bit is one, the decimal is added to the result in rAdd5:4:3:2:1:0. 

2. The integer is then multiplied with the exponent: each positive exponent multiplies the integer by 

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float_conv16.asm
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two. If the left-shift shifts a one to byte 6 in rAdd5, the number is divided by 10 and the decimal  
exponent is increased by one. If the exponent is negative, the number in rAdd5:4:3:2:1:0 is divided  
by two. If rAdd4 gets empty by shifting, the number is multiplied by 10 (*4 by two left shifts, *5 plus  
original value, *10 by an additional left shift and the decimal exponent is decreased by one. 

3. If follows normalization of the decimal integer: If byte 6 in rAdd5 is not zero, the number is divided 
by 10 and the decimal exponent is increased. If the number in rAdd4:3:2:1:0 is larger than or equal  
to  1.000.000.000.000  or  0xE8.D4.A5.10.00  (the  maximum integer  that  the  following  integer-to-
decimal conversion can handle), the number is also divided by 10 and the decimal exponent is 
increased. In case that the number did not exceed the maximum, it is checked whether it is smaller 
than 100.000.000.000 or 0x17.48.76.E8.00. If that is the case, the number is multiplied by 10 and 
the decimal exponent is decreased. That ensures that the first digit is at least a one (normalization  
of the decimal). 

4. The integer is then converted to a decimal  value.  This  is done by subtracting 100.000.000.000 
repeatedly from the integer until an underflow occurs. This leads to the first digit and the decimal  
subtractor  is  added  again.  The  decimal  dot  then  follows.  The  following  digits  are  derived  by 
repeatedly subtracting the next lower decade, and down until  10. The last digit is the rest of the 
number. 

Note that dividing a 6-byte integer by 10 requires 
shifting the 48 bits bitwise to the left into another 
register. If that gets larger or equal 10, a one is 
shifted into the result, if not a zero is shifted. The 
division routine is a bit lengthy and consumes lots 
of  execution  time.  As  this  routine  is  repeatedly 
executed if large positive binary exponents have 
to be processed, their time consumption is higher 
than for all other cases. But: compare these times 
with the ones above and consider that we have 
doubled the mantissa bits (from 16 to 32). 

The  table  on  the  right  shows  the  results  for 
various input combinations. 

The source code in  assembler  format  can be downloaded  from  here.  If  you  like  to use it  for  serious 
applications: add another byte to the right to get increased accuracy and reduce the Div10 routine from 48 
down to 40 bits in cases where no overflow is in rAdd5 to increase the execution speed. 

Conclusion
Keep away from those fractional numbers. They eat your performance and blow up your code with, in most  
cases, completely unneeded trash. 

Floating point arithmetic in assembly language

Converting decimals to binary floating point numbers in assembler 
language
Following the introduction to binary floating point numbers and the conversion of binary floats to decimal 
format we need the opposite of the last: the conversion of decimals to float. And that goes like this. 

Decimal number formats

There are lots of different decimal number formats: 

• 1 or 123: decimal fixed integers without decimal dot, 

• 12.3: decimal floating point numbers with decimal dots, 

• -1.234: negative decimal floating point numbers with decimal dot, 

• 1.2345E2, 1.2345E+2, 1.2345E+02: decimal floating point numbers with one or two decimal 
exponents, and with or without "+", 

• 1.23456E-12: decimal floating point numbers with negative decimal exponents, 

• -1.234567E-13: negative decimal floating point numbers with negative decimal exponent. 

To convert all these formats of decimals to binary floating point numbers, the software has to: 

1. check whether the decimal is negative (the string starts with "-"), 
2. convert the unsigned decimal mantissa to a binary number format, 
3. get the decimal  exponent (number of decimal digits before the decimal  dot plus the number  of 

digits after the decimal dot plus the negative or positive number following "", if any) and to multiply  
(positive exponent) or divide (negative exponent) the binary mantissa, including any changes to the 
binary exponent, if necessary, 

4. normalize the binary mantissa (highest mantissa bit = 1), and to 
5. invert the mantissa's sign bit and it's content if the input number is negative. 

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float40_b2d_fast.asm
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The assembler software for the conversion

The assembler source code here has the decimal number to be converted to a binary float as a string with  
ASCII-formatted characters in its flash memory, together with the conversion code. This string is copied to 
a location in SRAM first. This step is necessary to avoid multiple mixed accesses to the flash later on. If  
your decimal is already located in the SRAM (e.g. because you received it via serial communication) you  
can skip this step. Only ensure that the decimal ends with a null byte at the end (null-terminated string). 

The software is written for binary mantissas of up to 40 bit length and uses an 8-bit binary exponent. That  
corresponds to a 48-bit binary float. Those who need less accuracy can remove the last or the two last 
bytes and save some execution time with that. 

Detecting the negative sign

By default a positive sign is assumed. The pointer X (XH:XL = R27:R26) points to the beginning of the  
string  and  reads  the  first  ASCII  character.  If  that  is  a  minus  character,  the  flag  bMneg is  set.  The 
procedure later on uses this flag to format the mantissa as negative. 

Read the decimal mantissa and convert it to a binary integer

The software then starts reading the decimal mantissa. This is written for english format (decimal dot), but  
this is ignored in this stage. The null terminator 0x00 or a "E" character ends reading the decimal mantissa.  
Other characters than ASCII-Zero to ASCII-Nine lead to a jump to the error loop routine. In that  case  
register R16 holds an ASCII character that characterizes the reason for the failure: 

• "0": Character smaller than ASCII-zero, 
• "9": Character larger than ASCII-nine, 
• "E": Exponent larger than +/-39, 
• "b": Binary exponent smaller than -128, 
• "B": Binary exponent larger than 127. 

The digits read are, starting with 10,000,000,000 (0x02540BE400), multiplied (by repeated addition to the 
result) and added. The next digit reads the next lower decimal as hex. This is repeated until  either the 
string ends or an "E" ocuurs or the decimal reaches zero (all other characters following are ignored). To 
read the  decimals  from a table  in  flash  memory  avoids  to  divide  the  number  by  10  and  accelerates 
execution. 

Calculate the binary mantissa

To convert the binary integer that was read in to a binary mantissa, all mantissa bits are first cleared. Only  
the least significant bit in thje mantissa is set, which signals that all 40 bits have been converted. 

Starting with the decimal 1,000,000,000,000 (0xE8D4A51000) this decimal is repeatedly divided by two.  
The integer is then compared with this divided number. If the integer is equal or larger than the divided  
decimal, the decimal is subtracted and a one is shifted into the result registers. If not, a zero is shifted into  
the  result  registers.  If,  after  shifting,  a  zero  is  shifted  out  the  division  by  two  and  the  comparison  is 
repeated. If a one is shifted out, the conversion of 40 bits is complete. 

Determine the decimal exponent and convert it

Now the decimal exponent is determined. First the position of the decimal dot is searched for in the string: 
any digit left to the dot increases the decimal exponent. Then the "E" is searched for. If the string ends 
without this character, the decimal exponent is already correct. If not, the maximal two decimal digits are 
read,  converted to a binary byte and this  is  either  added (if  the exponent sign is  missing or "+" or  is 
subtracted, if negative (flag bEneg is set). 

Now the decimal exponent is checked if it is larger than 40 or smaller than -40. If so, the error loop is  
executed. 

If the decimal  exponent is positive (bit  7 of  rDExp is  clear),  the mantissa is multiplied  by 10. This  is 

performed in a subroutine named Mult10:. To do this it is first checked if the most significant byte of the 

mantissa (rR4) reaches or exceeds 25. If that is the case, the mantissa is shifted right and the binary  
exponent is increased. The mantissa is then copied, rotated to the left two times, then the copy is added  
and another shift left is performed. This multiplication is repeated as often as the decimal exponent says. 

If the decimal exponent is negative, the mantissa is divided by 10, as often as the decimal exponent says.  
Division by 10 can be done in two ways, both are included in the source code following the label Div10:. 
Just change the respective switch either to zero or one. The first type of division by 10 is to shift out the 40 
bits one by one and to subtract 10 from the shifted-out bits. If no carry occurs, a one is shifted into the  
result registers. If a carry occurred, the subtraction of the 10 is undone and a zero is shifted in. 

The  second  version  of  dividing  by  10  needs  a  little  bit  more  source  lines,  but  performs  faster.  The 
accelerated mode copies the previous mantissa, adds five to the mantissa, then the copy is repeatedly 
divided by two.  The first,  the second and the third  divided copies  are subtracted from the uprounded  
mantissa, the fourth and fifth are not subtracted. Then the following two divided copies are subtracted and 
the next following two are not subtracted. The dividing and subtracting ends when the divided copy is  
empty. 

To switch to the accelerated div10 version is useful if many divisions by 10 have to be performed (in case 
of  a  negative  decimal  exponent).  In  case  of  1E-30  the  classical  div10  method  needs  24.55 ms,  the 
accelerated method only 14 ms, and so is nearly double as fast. 

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float40_d2b.asm
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The accelerated method is further described here for divisions by N and here for 10 only. 

Normalization and sign processing

Finally the binary mantissa is normalized. It is either shifted to the right (if bit 39 is set) or is shifted left as  
long as bit 38 of the mantissa is not one. Of course shifting decreases or increases the binary exponent  
accordingly. 

Those who need normalization with an extra mantissa bit, shift the mantissa left until bit 39 is one and then 
clear bit 39. This shifts the most significant bit out and adds one bit to the mantissa. 

Finally: if the flag rDneg is set, the complete mantissa, including the sign bit 39, is inverted. 

After all these operations the result binary mantissa is in rR4:rR3:rR2:rR1:rR0, the binary exponent in 

rBExp and all is completed. 

Results

The  table  to  the  right  shows 
results  of  such conversions  from 
decimal  to  binary  for  selected 
cases.  Displayed  is  the  decimal 
number,  its  binary  mantissa  and 
exponent,  the  result  of  the 
conversion of the back to decimal 
format,  as  well  as  the  execution 
times  needed.  In  all  cases  the 
accelerated  DIV10  method  has 
been switched on. 

As  can be seen,  the re-converted numbers  differ  in  the fifth  or  sixth  decimal  digit.  So  is  0.12345651 
incorrect for the second "5" in the seventh digit, which would round up falsely to the sixth digit. This is as 
expected because with 40 bits LOG2(40) is little more than 5. If you need it more accurate, use a 56 or 64  
bit mantissa instead. The method is the same, the extensions are pretty small. 

Conclusion

Those who want to send the controller into deep bit shifting and away from the relevant things that also can 
happen in the controller's life, use floating point conversion. Conversion of a decimal to a 40-bit float can 
replace delay routines of around 10 ms. If you need maximum delay, then let your controller convert 1E-36 
and switch the accelerated method off. 

Have much fun with playing with this software. 

http://www.avr-asm-tutorial.net/avr_en/beginner/DIV10/DIV10.html
http://www.avr-asm-tutorial.net/avr_en/beginner/DIVN/DIVN.html
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Address modes in AVRs
Here you find all about accessing locations in assembler in AVRs. 

Accessing SRAM, registers and port registers
The first thing to learn when accessing memory 
types  in  AVRs  is  that  there  are  two  types  of 
addressing: 

1. Physical addresses, and 
2. Pointer addresses. 

Both are in most cases not identical.  In case of 
SRAM, the two address types have the following 
values (see the diagram): 

• The physical address of the SRAM starts 
with  0x0000.  If  the  device  has  1 kB 
SRAM,  its  physical  address  ends  at 
0x03FF. 

• The pointer address starts at an address 
SRAM_START,  which  is  defined  in  a 
constant in the def.inc-file. In devices that 
have no extended port registers this is the 
address 0x0060, in other cases 0x0100 or 
even higher. 

Note that when accessing SRAM you'll never use 
the physical address of this memory space, only 
and  exclusively  the  pointer  address.  This  is  a 
major  difference  to  accessing  port  registers, 
where you can use both address types. 

Consequently, if you switch the assembler to the 
data  segment  using  the  .dseg directive,  its 
address pointer starts at SRAM_START (in many 
cases 0x0060, in other cases beyond that address). How can you find out that address? Now, either you 
search the def.inc file for that address or, more convenient, you use  gavrasm as assembler or use the 
avr_sim simulator. Place the following lines into your source code: 

.nolist

.include "m324PBdef.inc" ; Define device ATmega324PB

.list

.dseg
TheFirstSramLocation:
.cseg

After assembling with gavrasm, with the -s option active, or with avr_sim you'll  see in the symbol table 
within the lower section of the listing that the label placed behind the .dseg directive: the pointer address of  
the  first  SRAM location  is 
in that case 0x0100. If you 
would  have  selected  an 
ATtiny13  (with  .include 
"tn13def.inc" in the second 
line),  you  would  get  a 
different value.

If  you'll  need the  constant  RAMEND:  just  use  .equ my_ramend = RAMEND to get  the  value  of 

RAMEND  into  the  symbol  list.  To  remove  the  directive  .NOLIST from  the  source  code  is  not 
recommended as it flows your attention with hundreds of information lines that you are not really interested 
in. 

If you are working with avr_sim, you can also use the feature "View" and "Symbols" and filter the list with  
the term "RAMEND". 

Accessing SRAM locations with fixed addresses
SRAM can have a physical  size  of  up  to  32,768  bytes.  As  the  pointer  address  is  always higher,  the 

http://www.avr-asm-tutorial.net/avr_sim/index_en.html
http://www.avr-asm-tutorial.net/gavrasm/index_en.html
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addresses to be handled are therefore 16 bits wide (and not just 15 bits). 

Such locations can be addressed directly using the instructions STS 16-bit-address,register or LDS 
register,16-bit-address. Register can be any register between R0 and R31. The 16-bit-address 
can be any 16-bit wide fixed number. 

The following code writes 0xAA (or binary 0b10101010) to the first physical SRAM location. This is also  
written to the 15th byte in SRAM. To demonstrate the usefulness of the pointer addressing, we also write 
this byte to registers R0 and R15: 

.dseg
FirstSramLocation: ; Place a label to this address
;
.cseg
  ldi R16,0xAA
  sts FirstSramLocation,R16 ; Write to first SRAM location
  sts FirstSramLocation+15,R16 ; Write to SRAM 15 bytes later
  sts 0,R16 ; Write to register R0
  sts 15,R16 ; Write to register R15

To the left, the two bytes written to SRAM can be seen. To the 
right the two bytes written to those registers can be seen. 

If we would have to read from these locations we would use the following: 

  lds R16,FirstSramLocation ; Read from first SRAM location
  lds R17,FirstSramLocation+15 ; Read from SRAM 15 bytes later
  lds R18,0 ; Read from register R0
  lds R19,15 ; Read from register R15

If you want your controller to waste some time: lds R16,16 or sts 16,R16 are wonderful operations. 

Note that all four locations use fixed addresses. Those addresses are added to the STS instruction word  
0x9300, as can be seen from the assembler listing, so that a double-word instruction is resulting. 

Accessing SRAM location with pointers
To access areas of locations we'll need to address dynamically, in registers. AVRs can handle 16 bit wide  
addresses in three double registers or so-called register pairs): 

• X = XH:XL = R27:R26, 
• Y = YH:YL = R29:R28, 
• Z = ZH:ZL = R31:R30. 

To  point  double  register  X  to  the  first 
SRAM location we use the two following 
instructions: 

.dseg
FirstSramLocation: ; Place a label to this address
.cseg
  ldi XH,High(FirstSramLocation) ; Set the MSB of the address
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  ldi XL,Low(FirstSramLocation) ; Set the LSB of the address

The address is now in X. To write 0xAA to this address we add the following: 

  ldi R16,0xAA ; Write AA to register R16
  st X,R16 ; and to the first SRAM location

Now, that is not very advanced. It is still only one byte to write. But we'll see how we can use the pointer for  
more. 

Accessing SRAM location with increasing pointers
Now we can easily  fill  the first  16 bytes  of  SRAM with  the 0xAA by using  a loop that  increases that  
address: 

.dseg
FirstSramLocation: ; Place a label to this address
.cseg
  ldi XH,High(FirstSramLocation) ; Set the MSB of the address
  ldi XL,Low(FirstSramLocation) ; Set the LSB of the address
  ldi R16,0xAA ; Write AA to register R16
FillLoop:
  st X+,R16 ; and to the SRAM location and increase the address
  cpi XL,Low(FirstSramLocation+16) ; Check if end of fill area
  brne FillLoop

This shows the initiation stage: 

• The pointer register X (in R27:R26) has been set to the address of the first SRAM location. MSB 
and LSB are set. 

• The register R16 is set to 0xAA. 

The first step has been executed,  ST has written the content of register R16 to the first SRAM location. 
The plus behind X auto-increases the address right after writing the register to the location in X. It replaces 
two instructions: 

1. ST X,R16, plus 

2. ADIW XL,1, 

but consumes only two clock cycles instead of four. That is called Auto-Increment. 

The last step is to check whether X already points to outside of our row. The first location outside our row 
is  LastLocationPlus1:. Note that this only works for area lengthes of up to 256 bytes, because we 
check only the LSB of the address byte. An alternative way, to be able to fill any desired length of SRAM  
with that constant, would be: 
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.dseg
FirstSramLocation: ; Place a label to this address
  .byte 16 ; Define length of area
LastSramLocationPlus1:
;
.cseg
  ldi XH,High(FirstSramLocation) ; Set the MSB of the address
  ldi XL,Low(FirstSramLocation) ; Set the LSB of the address
  ldi R16,0xAA ; Write AA to register R16
FillLoop:
  st X+,R16 ; and to the SRAM location and increase the address
  cpi XH,High(LastSramLocationPlus1) ; Check MSB
  brne FillLoop
  cpi XL,Low(LastSramLocationPlus1) ; Check if end of fill area
  brne FillLoop

Now: whatever length is defined in the SRAM segment, we'll write our constant to that complete area. 

Accessing SRAM location with decreasing pointers
Increasing pointers and repeated read/write allow very fast and effective programs. But what if we need  
decreasing? 

As a somewhat weird example: we want to copy an SRAM area to a different area in a reversed row, so 
that the text in one area appears reversed in another area. 

First we have to create a text pattern in a first area. Like this: 

.dseg
  Textarea:
  .byte 16
  TextareaEnd:
.cseg
  ldi XH,High(Textarea)
  ldi XL,Low(Textarea)
  ldi R16,'a'
FillLoop:
  st X+,R16
  inc R16
  cpi XL,Low(TextareaEnd)
  brne FillLoop

That produces the pattern here. In the initiation step the pointer X is set to the beginning of the text area,  
R16  is  set  to  the  ASCII  character  'a'.  In  a  loop  then  this  character  is  written  to  SRAM,  Y  is  auto-
incremented and R16 is also incremented, which produces a 'b', and so on. 

Now we'd like to reverse that. Of course we need a second pointer for this, e.g. Y. The first character, that  
the pointer X points to at the beginning, the "a", goes to the last position of the second area. The next 
character goes one position left  to that,  so we have to decrease the second pointer.  If you think, that 
possibly  an Y- would be sufficient  to avoid a pointer  decrease with  SBIW YL,1,  you are on a good 

assumption, but the assembler complains: ST Y-,R16 is not a valid instruction: 

This  is  the  error  message  of  the 
assembler  when  trying  to  use  ST 
X-,R16: the minus is valid on the left 
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of Y, not to the right of it. This has a serious consequence: the minus is executed first, before storing. And:  
the pointer Y starts one position to the right, after the last used target byte. 

This here is the complete source code for reversed copying. 

.dseg
  Textarea:
  .byte 16
  TextareaEnd:
  .org 0x0080 ; Leave some space in between
  Textreverse:
  .byte 16
  TextreverseEnd:
.cseg
  ldi XH,High(Textarea)
  ldi XL,Low(Textarea)
  ldi R16,'a'
FillLoop:
  st X+,R16
  inc R16
  cpi XL,Low(TextareaEnd)
  brne FillLoop
  ldi XH,High(Textarea)
  ldi XL,Low(Textarea)
  ldi YH,High(TextreverseEnd)
  ldi YL,Low(TextreverseEnd)
CopyLoop:
  ld R16,X+
  st -Y,R16
  cpi XL,Low(TextareaEnd)
  brne CopyLoop

The  first  part  works  like  filling  with  a 
constant,  but  here  we  increase  the 
characters in R16 from 'a' to 'p'. 

The X-pointer is then set to point to the 
beginning  of  that  area.  Then  we  add 
pointer Y, which points at the end of the 
reversed text area, plus 1. 

In  a  loop,  first  the  next  character  from 
the text area is read. Of course, with an 
auto-increment. 
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The  character  that  was  read  to  R16  is 
then copied to the reverse text area using 
the pointer Y. But this is done only after 
decreasing the pointer address with -Y.

 

These  two  steps,  read  and  write,  are 
repeated in the copy loop. The loop ends 
if 

• either  the X pointer  points  to the 
end of the text area, 

• or  the  Y  pointer  points  to  the 
beginning of the reverse text area. 

That was a quick reverse copy. All address manipulation of the two pointers use the Auto-Increment- and 
Auto-Decrement-features of the AVRs, no fuzzy and time-consuming ADIW or SBIW necessary. All with 
the built-in instruction set of the AVRs. But there are even more addressing modes in AVRs. 

Accessing SRAM locations with displacement addressing
AVRs have an additional addressing mode that temporarily adds a displacement to a pointer. This is also  
called indirect mode. Only Y and Z are capable for that, not the X register pair. 

The two instructions doing that are  STD Y/Z+d,register and  LDD register,Y/Z+d. d is a constant 
between 1 and 63. It is only added temporarily, Y or Z are not changed at all. So this instruction replaces  
the following sequence (here for Y): 

  adiw YL,d ; Add displacement d to Y
  st Y,R16 ; store R16 on displaced location
  sbiw YL,d ; Subtract displacement d from Y  

The difference between the STD and this sequence is that STD does not affect any SREG flags. And it  
requires only two clock cycles instead of six. 

STD and  LDD are  useful  in 
cases  where  you'll  have  to 
access byte rows in respect to a 
fixed  address:  access  to 
displaced  bytes  is  eased.  An 
example for this. 

Your  ADC  has  up  to  eight 
channels, each channel has its 
own  sum where  all  measuring 
results are summed up, its own 
multiplier,  its  multiplication 
result, its own compare values, 
its own jump address, etc. 

This  record  of  max.  64  bytes 
each  has  to  be  treated  as  a 
whole,  e.g.  the  multiplication 
routine  for  all  eight  channels 
exists only once and is called with Y or Z pointing to the current channel. 

To access the data bytes in this structure, e.g. summing up a 10-bit measuring result in R1:R0, the sum 
value can be accessed as follows: 

  ld R16,Y ; Read the LSB of the sum
  add R16,R0 ; Add the LSB
  st Y,R16 ; Store the LSB
  ldd R16,Y+1 ; Read the MSB of the sum with displacement
  adc R16,R1 ; Add the MSB
  std Y+1,R16 ; Store the MSB with displacement

The only thing you need is to set Y to the channel's record address. Because all LD/ST and LDD/STD do 
not affect SREG the ADC of the MSB can use the carry flag. With ADIW or SDIW in between, that wouldn't  
be possible. 

The advantage of the use of displacement access via Y or Z is that any of the necessary routines accesses 
one of the eight  channel's  record. Only  the Y pointer's  address decides which one of the channels  is 
manipulated. 
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But the displacement access can be useful in many other cases. Here a simple example. Let us assume  
we have filled an area with characters, such as here. 

.dseg
TextLocation: ; Place a label to this address
  .byte 27
TextLocationEnd:
  .byte 1
TextLocationEndPlusOne:
;
.cseg
  ldi YH,High(TextLocation) ; Set the MSB of the address
  ldi YL,Low(TextLocation) ; Set the LSB of the address
  ldi R16,'A' ; Write character A to register R16
FillLoop:
  st Y+,R16 ; and to the SRAM location, auto-increase the address
  inc R16
  cpi YL,Low(TextLocationEnd) ; Check if end of fill area
  brne FillLoop

Now let us assume further that we need space for an additional character at the start of that string, but we 
want to keep the original. That means we extend this text by one SRAM location and add the additional  
character at the beginning. 

This  is  the  filling  process,  like  already 
seen in the examples above. 

In  that  case  it  is  clear  that 
we'll  have  to  start  from  the 
end of the string, the 'Z': only 
if we shift the 'Z' one position 
to the right, we'll  have space 
to shift the next character, the 
'Y',  also  one  position  to  the 
right. 

We see that the last fill  operation already ends with the Y pointer pointing to right  behind the 'Z'.  We 
already know how to read the 'Z': just with LD R16,-Z. That decreases the address in Y by one and then 
reads the 'Z'. 

But we'll have to write the 'Z' now to the next higher address. We can do that by increasing Y with ADIW 
YL,1 first, then write the character and then going back with SBIW YL,1. As the character is by one location 
to the left, we can go back by two. That would lead to the following down-up-and-down-orgy: 

  sbiw YL,1 ; 2 clock cycles
Loop:
  ld R16,Y ; +2 = 4 clock cycles
  adiw YL,1 ; +2 = 6 clock cycles
  st Y,R16 ; +2 = 8 clock cycles
  sbiw YL,2 ; +2 = 10 clock cycles
  ; check end of loop here
  brne Loop
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A much  more  elegant  solution  uses  the 
"Decrease before reading" feature of AVR 
addressing:  LD R16,-Y first  decreases 
the  pointer  and reads  the  byte  from the 
already decreased address. This replaces 
the  SBIW plus the  LD and packs it into 
one  instruction.  By  that  it  decreases 
execution from four clock cycles down to 
two. 

The two steps which then increases the 
pointer  again  and writes the character 
there,  can  be  replaced  by  another 
intelligent  AVR  address  mode:  STD 
Y+1,R16. This adds temporarily a one 
to Y and writes the character there. As 
the  one  is  only  temporarily  added,  Y 
remains  the same after  the instruction 
has executed. No further address manipulation is necessary. 

With these two addressing tricks we come to the following optimal code for that string shifting: 

ShiftLoop:
  ld R16,-Y ; 2 clock cycles
  std Y+1,R16 ; +2 = 4 clock cycles
  cpi YL,Low(TextLocation) ; +1 = 5 clock cycles
  brne ShiftLoop ; +1 or +2 = 6/7 clock cycles
  ldi R16,'@'
  st Y,R16

Now, that is really amazing: no pointer corrections in between: no ADIWs or SBIWs, anything in fast, two  
cycle long instructions. 153 µs for shifting 28 characters at 1.2 MHz clock in an ATtiny13. 

And:  more  than double  as  fast  than with  address  manipulation.  So if  your  PIC  does  not  know auto-
decrement and displacement access, it needs double as long as an AVR. And: that makes a clock cycle  
increase in an ATtiny13 with the factor of two, without increasing its power consumption at all. 

Conclusion: if  your program goes far beyond a blink routine in respect to complexity, think about such  
advanced  instruction  capabilities.  It  makes  your  code  more  elegant,  executes  faster,  is  much  more 
effective and, if associated with enough comments, it reads simpler. 

Accessing port registers
Again, we have to be aware of the two address types here: 

1. Physical addresses, and 
2. Pointer addresses. 

Reading  from and  Writing  to  port  registers  use  both  address  types, 
which can confuse the beginner. 

Accessing classical port registers
This type of access uses the two instructions OUT outport,register 
to  write  and  IN  register,inport to  read  the  content  on  those 
locations. The address type used here are the physical addresses. 

Access with OUT and IN is limited to the 64 classical port registers. The 
extended port registers are not accessible with those two instructions 
(see below on how accessing those works). 

If you need to set or clear only one of the bits in a port location, you can 
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use the  SBI port,bit for setting or  CBI port,bit for clearing  the bit.  These instructions replace the 
following instructions: 

  in R16,port ; Read the port
  ; Setting
  sbr R16,1<<bit ; Setting the bit, or:
  ori R16,1<<bit ;   alternative for setting the bit in the register
  ; Clearing
  cbr R16,1<<bit ; Clearing the bit, or:
  andi R16,256-1<<bit ; alternative for clearing the bit in the register
  out port,R16 ; Write to the port

While this (longer) method can be used on all 64 port registers, the SBI and CBI works for the lower half of  
the port registers only. 

SBI  and CBI require  two clock cycles,  while  the alternative single  step method requires  three and an  
additional register. 

Toggling a single bit in a port can be done by EXOR-ing the port with a register that has the bit(s) set that  
are to be toggled: 

  in R16,port ; Read the port
  ldi R17,1<<bit ; The port bit to be toggled, or
  ldi R17,(1<<bit1)|(1<<bit2) ; two bits to be toggled
  eor R16,R17 ; Exclusive or
  out port,R16 ; Write the toggled port

If the port to be toggled is an I/O port, you can, in most modern AVR devices, alternatively write to the I/O's 
input port to toggle one or more of the bits. This toggles the bits 1 and 3 of the I/O port PORTA: 

  ldi R16,(1<<1)|(1<<3)
  out PINA,R16

Access to extended port registers
If the OUT to a port register is ending with the assembler error message that the port is out of range, this  
port is in the extended port register range beyond physical address 0x3F. That is the case in larger ATtiny 
or ATmega devices, where 64 port registers did not provide enough address space. 

In that case, you'll have to use the pointer address and either the instruction STS or ST to write the data to 
this port. In that case the address given in the def.inc has already added the 0x20 and is a pointer address,  
so that you can simply replace the OUT with STS (or an IN with LDS) to that location. 

Of course, the SBI/CBI and the SBIC/SBIS instructions cannot be used for these extended port registers.  
That  is  why  port  registers,  that  require  to  be  changed  with  a  smaller  probability  are  placed  into  the  
exptended port register area. 

Access with pointers, example: the circular LED light
Now let us assume you need a 32-bit light row, where one of the 32 LEDs is pointing towards the next  
emergency exit. As the whole cycle has to be one second long, a frequency of 32  Hz increases the LED 
and each LED has to be on for 21.25 ms.

This  requires  a  controller  with  four  complete  8-bit-I/O-ports.  The  excerpt  from 
avr_sim's device select window shows all those AVR devices. We can use one of 
those, such as the ATmega324PA. 

This is the hardware needed. Looks pretty simple, many resistors and LEDs. If we 
are sure, that the software will switch only one LED of all 32 at a time on, we can 
reduce the number of resistors down to one and connect all cathodes with that single 
resistor.  If  the  number  of  LEDs  on is  one  in  each  8-bit-port  we can reduce  the  
number of resistors down to four by connecting all LED cathodes in one 8-bit-port to 
one resistor. 

The first step in software, to make all I/O direction bits output and to set PORTA's bit  
0 to one and all others to zero, can be done with or without pointers. The version 
without pointer would be: 

  ldi R16,0xFF ; All bits as output 
  out DDRA,R16
  out DDRB,R16
  out DDRC,R16
  out DDRD,R16
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  clr R16 ; All upper 
24 bits clear
  out PORTD,R16
  out PORTC,R16
  out PORTB,R16
  ldi R16,0x01 ; 
Lowest bit set
  out PORTA,R16

These are the register  ports controlling 
I/O  ports  in  an  ATmega324PA.  All 
addresses form a row of three register 
ports:  PIN,  DDR  and  PORT.  The 
physical  as  well  as  the  pointer 
addresses increase by one.  So,  with a 
pointer base address of 0x20 in Y or Z, 
those  register  ports  can  be  accessed 
with displacements of 0, 3, 6 and 9 for 
the PIN of the I/O port, with 1, 4 and 7 
the  DDR  I/O  ports  are  displaced  and 
with 2, 5 and 8 the PORT I/O ports are 
displaced. If you wonder what is meant 
with  the  term  "displacement",  see  the 
chapter on displacement in SRAM. 

The  version  with  a  pointer  would  use 
these displacements and would look like this: 

  ldi R16,0xFF ; All bits as output
  ldi YH,High(PINA+0x20) ; Point Y to PINA's pointer address
  ldi YL,Low(PINA+0x20)
  std Y+1,R16 ; Access the DDR port registers
  std Y+4,R16
  std Y+7,R16
  std Y+10,R16
  clr R16 ; The upper 24 bits clear
  std Y+5,R16 ; Access the PORT port registers
  std Y+8,R16
  std Y+11,R16
  ldi R16,0x01 ; The lowest bit set
  std Y+2,R16

Now, that is clearly less efficient, because each STD access consumes two clock cycles instead of one for  
an OUT. So we would prefer the classical OUT method over the pointer method in that case. 

But now, let's write an interrupt service routine for the compare match interrupt of a timer that controls the 
speed of our LED row. Quick and dirty this would be like: 

Tc0CmpIsr: ; 7 clock cycles for int+rjmp
  in R16,PORTA ; +1 = 8
  lsl R16 ; +1 = 9
  out PORTA,R16 ; +1 = 10
  in R16,PORTB ; +1 = 11
  rol R16 ; +1 = 12
  out PORTB,R16 ; +1 = 13
  in R16,PORTC ; +1 = 14
  rol R16 ; +1 = 15
  out PORTC,R16 ; +1 = 16
  in R16,PORTD ; +1 = 17
  rol R16 ; +1 = 18
  out PORTD,R16 ; +1 = 19
  brcc Tc0CmpIsrReti ; +1/2 = 20/21
  in R16,PORTA ; +1 = 21
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  rol R16 ; +1 = 22
  out PORTA,R16 ; +1 = 23
Tc0CmpIsrReti: ; 21/23 cycles
  reti ; +4 = 25/27 cycles
  ; Total cycles: 31 * 25 + 27 = 802 cycles

The given clock cycles are for each interrupt. 31 times the interrupt does not require the restart, consuming  
25 clock cycles each, once a restart is necessary and consumes 27 cycles. This sums up to 802 cycles in 
total.  Together  with  32  wake-ups  from  sleep  and  64  cycles  for  jumping  back  to  sleep,  we  are 
approximately at 866 cycles in one second. At 1 MHz clock, that makes a sleep time share of 99.13%. 

But: Three of the four OUT instructions are superfluous, because the active LED is not in that I/O port. So 
writing only the one port with the currently active LED would be sufficient. 

In those rare cases, where the active LED changes the I/O port (every eight's shift), both the old port as 
well as the next port has to be written. That brings us to a different algorithm, this time with pointers. First 
the initialization: 

  ldi XH,High(PORTA+0x20) ; Pointer address to X, +1 = 1
  ldi XL,Low(PORTA+0x20) ; dto. LSB, +1 = 2
  ldi rShift,0x01 ; Start shift register, +1 = 3
  st X,rShift ; Write this to PORTA, +2 = 5

As these five cycles are to be performed only once during init, we don't really count them. And the interrupt  
service routine with the moving pointer would be like this: 

OC0AIsr: ; 7 cycles for int+rjmp
  lsl rShift ; +1 = 8
  st X,rShift ; +2 = 9
  brcc Tc0CmpIsrReti ; +1/2 = 10/11
  ; Next I/O port
  adiw XL,3 ; Point to next channel, +2 = 12
  cpi XL,Low(PORTD+3+0x20) ; +1 = 13
  brne Tc0CmpIsr1 ; +1/2 = 14/15
  ldi XH,High(PORTA+0x20) ; +1 = 16
  ldi XL,Low(PORTA+0x20) ; +1 = 17
Tc0CmpIsr1: ; 15/17 cycles
  ; Restart from the beginning
  ldi rShift,0x01 ; Set bit 0, +1 = 16/18
  st X,rShift ; +2 = 18/20
Tc0CmpIsrReti: ; 11/18/20
  reti ; +4 = 15/22/24
  ; Total cycles: = 28*15 + 3*22 + 1*24 = 510

The number of cycles is slightly more than half of the classical method without pointers. This is a clear  
indicator that the method with the moving pointer is nearly double as efficient, simply because it doesn't  
waste time on unnecessary INs and OUTs. That increases the sleep share to 99.43% and also reduces the 
current consumption of the controller, so that the emergency power supply lasts longer. 

Now consider that we connect the LED's cathodes to the I/O pins and the resistor(s) to plus. There are only 
a few changes that have to be made in the software: CLR rShift turns to SER rShift, LDI rShift,0x01 
turns to LDI rShift,0xFE and brcc Tc0CmpIsrReti turns to brcs Tc0CmpIsrReti. These changes 
concern the initiation of the I/O ports as well as the interrupt service routine. A little more tricky is that the 
lsl rShift in the ISR has to shift a one in, e.g. with sec and rol rShift instead of lsl rShift. Now the 
software is ready to pull-down the LEDs to GND instead of driving current into the output pins. 

The assembler software for this can be downloaded from here. It allows to increase or reduce the circle 
time between 50 and 2000 milliseconds as well as to select anodes and cathodes connected to the I/O  
pins (see the adjustable constants on top of the source code). 

What if we want to switch more than one LED on? If you allow four LEDs to be on in each LED cycle step, 
the software is rather simple: just output the register rShift to each of the four I/O ports, without the use of 
pointers. If you want two LEDs to be on at a time (e.g. L1 and L16, L2 and L17, etc.), the algorithm requires 
pointers and is a little bit more tricky, because the restart of the two pointers, back to PORTA, happens in 
two different port phases. If eight LEDs shall be on in each phase, consider taking the shift state from a  
table in flash memory (see the chapter on adressing flash) rather than with LSL or ROL. If more than these 
LEDs simultanously on, you might run into current limits of the device: the ATmega324PA can drive only  
200 mA via its VCC and GND pins. So make sure that your LED currents do not exceed this limit (e.g. with 
16 LEDs on - every second LED - drive those with a maximum current of 12.5 mA per LED, with all LEDs 
on only 6.25 mA per LED are allowed).

http://www.avr-asm-tutorial.net/avr_en/beginner/addressing/32bit_flowlight.asm
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Conclusion:

If  your program does require the same operation with ports over and over again,  you should consider 
programming those ports with an algorithm. In many cases this is more efficient than doing all the same all 
over again and wasting typing and assemble time instead of a more intelligent approach. 

Accessing EEPROM
All AVRs have at least 64 bytes and up to 4,096 bytes EEPROM on board. EEPROM is a memory type 
that keeps its content, even if the power supply of the device is down and, after a short or long period of 
time, is powered up again. 

Un-programmed EEPROM space contains all 0xFF. The content of the EEPROM can be written in two  
modes: 

1. When assembling source code, anything that was written in the .ESEG section of the source code, 
is copied into a hex file named *.eep. The file's content can be programmed into the EEPROM 
using a burner software. 

2. Within  the  actively  executed  program,  EEPROM locations  can  be  cleared  and  re-written  with 
different content. The procedure to clear and re-write a byte requires some time, the end of the 
write process can initiate an interrupt, if so enabled. 

Reading from EEPROM requires a different procedure. Reading EEPROM content is fast and requires 
only a few clock cycles. 

EEPROM initiation with the .ESEG directive
If you use EEPROM you might want to set the initial EEPROM content on the first controller start-up to 
certain values. This requires a .ESEG directive. The following places different content into the EEPROM. 

.CSEG ; Code segment
JumpAddress:
  ; Instructions to be executed
;
.ESEG
.ORG 0x0000 ; The start address of the EEPROM content, default=0
  .db 1,2,3,4,'A','a' ; Bytes to be written
  .dw 1234, 4567 ; 16-bit Words to be written
  .db "Text to be written to EEPROM",0x00 ; Text string
  .dw JumpAddress
; End of the ESEG
;
.CSEG ; Code segment
; ... Further code for execution

After assembling and programming the .eep file to the controller,  its EEPROM looks like shown in the 
picture. 

Normally programming the flash memory not only erases the flash but erases the EEPROM content as 
well. If you want to keep the EEPROM content during programming the flash, set the respective preserve  
fuse of the device. That prevents from erasing the flash. And: if that fuse is set, do not write the .eep file  
again to the EEPROM. It will fail verification in most of the cases, because zeros in the EEPROM can not  
be overwritten by ones (only erasing produces ones). 

EEPROM port registers
Writing or reading EEPROM uses three or four port registers: 
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1. An  address: The lowest 8 bit 
of the address are to be written 
to the  port  register  EEARL.  If 
the device has  more than 256 
bytes  EEPROM,  the  most 
significant 8 bits of the address 
are to be written to port register 
EEARH. 

2. A  data port:  When  writing  to 
the EEPROM the 8 bit  data to 
be  written  are  written  to  the 
data port register  EEDR, before the write process is started. When reading from EEPROM, the 

data at the addressed location is appearing in port register EEDR. 

3. A  control port: Write to or read access from the EEPROM is controlled in the control register 

EECR by manipulating bits in this register. When writing, the EEPE-Bit is one, when reading the 

EERE-bit is one. 

Please note that the addresses given are subject to changes, so always use the def.inc names instead of 
fixed addresses. 

Writing the EEPROM address
If  your program shall  read or write a single byte to/from the EEPROM, the assembler  code to set the 
address should look like this: 

.equ EepromAddress = 0x0010
;
; First wait until any write procedure has finished
WaitEep:
  sbic EECR,EEPE ; Check EEPE byte
  rjmp WaitEep ; Wait further
;  
; Set the address
  ldi R16,Low(EepromAddress)
  out EEARL,R16
  .ifdef EEARH ; If more than 256 bytes EEPROM
    ldi R16,High(EepromAddress)
    out EEARH,R16
    .endif
  ; Read or write procedure
  ReadWriteEep:
    ; Read or write procedure here

Note that changing the EEPROM address ALWAYS should check first that no programming is in progress.  
These are the first two words, before any settings can be made. 

The .IFDEF directive adds the MSB setting only if the symbol EEARH is defined in the def.inc file, which is  
the case for all AVRs that have more than 256 bytes EEPROM. 

If you want to read or write multiple EEPROM locations in a row, you'll have to set the LSB of the address  
in a loop, and, if the MSB changes, the MSB as well. As the check whether programming is finished has to  
be made prior to entering any address changes and as the MSB has to be set in any case (if the MSB is  
physically available), we cannot limit the MSB output only to cases where the MSB changes. Here, we  
output the MSB in all cases, which are only two additional instructions. 

.equ EepStartAddr = 0x0010

.equ EepEndAddr = 0x001F
  ; Set the address to the double register in R1:R0
  ldi R16,High(EepStartAddr)
  mov R1,R16
  ldi R16,Low(EepStartAddr)
  mov R0,R16
EepLoop:
  sbic EECR,EEPE
  rjmp EepLoop
  ; Output the LSB of the address
  out EEARL,R0
  .ifdef EEARH
    ; Output the MSB of the address
    out EEARH,R1
    .endif
EepReadWriteProcedure:
  ; Add Read or write procedure here
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  inc R0 ; Increase LSB
  brne EepChkEnd
  inc R1
EepChkEnd:
  ldi R16,Low(EepEndAddr+1)
  cp R0,R16
  brne EepLoop
  ldi R16,High(EepEndAddr+1)
  brne EepLoop

Reading from the EEPROM
Reading from the EEPROM is initiated by setting the EERE-bit in the control register EECR. This halts the 

CPU for four clock cycles and then writes the EEPROM content at that address to port register  EEDR. 
That looks like this: 

.equ EepAddrs = 0x0010
EepWait:
  sbic EECR,EEPE ; Wait until write operation finished
  rjmp EepWait
  ldi R16,Low(EepAddrs)
  out EEARL,R16
  .ifdef EEARH
    ldi R16,High(EepAddrs)
    out EEARH,R16
    .endif
  sbi EECR,1<<EERE
  ; Four clock cycles pause
  in R16,EEDR ; Read byte to R16  

In case we have to read more than one byte, we have to have more storage space. If a second byte is to 
be read, we'll need a second register. If more than three or four bytes are to be read, we use an SRAM  
space to write the bytes there, e.g. with a pointer to that in X, we would add the instruction ST X+,R16.

This  here  shows  how  we  read  the  complete  EEPROM content  into  an  area  in  SRAM  by  using  ST 
X+,R16. Note that the whole process needed close to one millisecond, because of delays during access 
reads, the check of the programming bit, the double byte check of the end and the pointer operations. 

Write access to the EEPROM
To avoid unplanned write access to the EEPROM, the procedure to start a write process is a bit more 
complicated: 

1. First  check  if  the  last  write  is  finished  by  testing  the  EEPE bit  in  the control  register  EECR. 
Otherwise wait. 

2. Then write the correct address to EEARL/EEARH. 

3. Then write the data byte to be written to EEDR. 

4. Then set the Master Programming Enable bit  EEMPE in  EECR, together with the programming 

mode bits  EEPM0 (Erase only) and EEPM1 (Write only), if so desired, and the interrupt enable 

EEPIE-bit, if desired. 
5. Within  the following four clock cycles (make sure that no interrupt  can occur during these four 

cycles) set the Programming Enable bit EEPE in EECR. 

This starts the programming of the location after two clock cycles. 
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The programming of the byte lasts 3.4 ms. When finished, the  EEPE-bit  is cleared and, if so enabled, 
starts an interrupt and jumps to the EEPROM-READY vector. 

An example: This text in the SRAM has to be copied to EEPROM. We can do that preferably with the 
interrupt feature of EEPROM write or in a discrete loop that checks whether the  EEPE-bit is clear and 
writes the next character in SRAM to the EEPROM. 

This is the state of the EEPROM after few characters have been written and the 16th character is currently  
written. In the first half of the write process the location is erased, which means that all bits at that location  
are set to one. In the second half,  the data is written. As this lasts roughly 3.4 ms, the bar shows the 
progress. Both, the master write/program enable bit EEMPE and the write/program enable bit EEPE are 
active (high). When the write process is finished, both bits are cleared by the AVR. 

As the whole process lasts more than 140 ms, it is not recommended to perform EEPROM writes in this 
lengthy way. This was just an example. 

One note on interrupts: if the interrupt-enable-bit  EEIE is set, the EEPROM READY interrupt re-triggers 

every time the EEPE-bit gets clear and if no other higher-ranking interrupt is active. Your whole program 
can be blocked by this, if you do not write the next byte to the EEPROM in your interrupt service routine. If  
no more bytes are to be written, clear the interrupt enable bit. 

Finally a warning: the number of write operations to EEPROM is limited to several thousand events. One 
day  has  over  80,000 seconds,  a  year  has  more  than 31 million seconds,  so  if  you  want  to  reach the 
guaranteed  number  of  write  accesses  in  one  year,  you can  write  the  same EEPROM location  every 
3,100 seconds or every 53 minutes. 

So do not unnecessarily re-write the EEPROM and limit write accesses to several minutes or hours and do 
it whenever really needed (e.g. because the user just pressed a key or because the controller has re-
started). It is a good idea to hold a copy of the EEPROM content in registers or SRAM and to only re-write 
the EEPROM if the difference is large enough. 

An example for this: if you want to keep the current state of a stepper motor in two, three of four bytes in an  
EEPROM location, do not write the position changes to EEPROM whenever one single step has been 
made. Write the status only after the complete move has finished. And write only the really changed bytes  
to EEPROM. And hope that the LSB of the EEPROM lasts long enough. 

Conclusions:
Read accesses from EEPROM are very fast,  but  less fast than SRAM read accesses or accesses to  
registers. So better read the needed EEPROM content once to a location in SRAM and access this instead 
of the EEPROM. 

Write accesses to EEPROM require longer times, are limited over the life-time of the device and should be 
limited to the cases where they are useful and really needed. Depending from the rest of your program and 
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from its overall timing considerations: better use the EEPROM READY interrupt to avoid timing conflicts. 

Flash memory accesses
All  AVRs have a memory, called flash memory, that holds the executable program. As the executable  
instructions in AVRs have 16 bits, the memory is 16 bit wide (in words, not in bytes). 

The  size  of  the  flash  memory  can  be  anything  between  512  words  and  up  to  393,216  words.  The 
addresses are therefore between 0x01FF and 0x05FFFF. In most cases the constant FlashEnd from the 
def.inc file provides the last or highest address. 

The address 0x00000 is special because it is the starting address: after power-up, a reset or a watchdog-
reset the instruction word in address 0x000000 is the first that is executed. 

The .CSEG directive
Assembling a source code writes all executable instructions and tables to the code segment CSEG by  
default. When switching the assembler either to the SRAM segment with the directive  .DSEG or to the 

EEPROM segment with the directive .ESEG, the return back to the code segment can be dore with the 

directive .CSEG. 

All code that has been assembled is written by the assembler to the .hex file. Its content can be written to  
the flash memory with the programmer soft- and hardware. 

Instructions such as  NOP write 16-bit words to the .hex file. Words with 16 bits can be written with the 

directive .DW 16-bit-value at any location within the flash. 

Bytes can be assembled and written to the .hex file with the .DB 8-bit-value. When writing one single 8-
bit-value, the upper significant byte MSB is always written to zero. When writing two 8-bit-constants within 
one .DB 8-bit-value-1, 8-bit-value_2 directive, the first value is written to the LSB, the second value 
to the MSB at the current location. 

The  assembler  source  code  to  the  left  is 
assembled, the results of the assembling can be 
viewed in the assembler listing below. 

• The  NOP in line 20 of the source code, 
which  is  a  valid  instruction,  has  been 
translated to an address of 0x000000 and 
an executable hex code of 0x0000. That 
hex code will be written to the hex file. 
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• The ADD R16,R16 in line 21 has been translated to the executable hex code 0x0F00 at address  
0x000001. 

• The  following  line  has  not  been  translated,  because  it  is  only  a  label  and  meaningful  for  the  
assembler only. 

• The RJMP loop has been translated to 0xCFFF at address 0x000002, an executable that jumps 
back to where it just came from (an indefinite loop. 

• The first .DB 1 has been translated to 0x0001 at address 0x000003, but the assembler complains  
with a warning, that the number of bytes in the .DB line is odd, and that he has added a 0x00 as  
MSB at address 0x000003. 

• The second .DB 1,2 has been translated to 0x0201 at address 0x000004. Note that the first byte 
0x01 is now the LSB of the resulting word in flash while the second byte 0x02 is the MSB of that  
word. 

• The third .DB 1,2,3 has been splitted into two words: 1 and 2 go to the first word, 3 goes to the 
second word, and the assembler warns again. 

• The line  .DB "A text string" is translated to seven words in a row: as can be seen from the 
second character in the string, a blank or 0x20, every second character goes to the MSB and every 
first character to the LSB. Again, the assembler complains that the number of bytes in the line is 
odd. 

• No such complaints in all lines with .DW: all words fit into the 16 bits of the flash memory. The last 

entry,  .DW Loop inserts the address of the label  Loop: into the flash memory at that address 
0x000014. We will later on read that address location to jump to such a label. 

The LPM instruction
The  instruction  LPM or  Load 
from Program Memory reads one 
byte from the flash.  It  takes the 
flash  address  from  the  register 
pair  Z  (ZH:ZL  =  R31:R30)  and 
transfers the result to register R0.

But:  each  address  in  flash 
memory  has  two bytes,  an LSB 
and an MSB. Which of the two bytes are to be read, and how to get the second byte at that same address? 
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The trick to do that is to shift the flash address left by one location and to add a zero or a one to the right of  
the address in bit 0 of Z. A zero to the right addresses the LSB, a one the MSB. 

One disadvantage does the trick have: bit 15 of the flash address cannot be used. So better place your  
lengthy tables with thousands of values into the lower half of your 64k words wide flash. 

The following formulations in assembler are all the same and set Z to access the LSB and the MSB of the  
byte table below: 

.equ FlashAddr = ByteTable ; Set the flash address
  ; Formulation 1
  ldi ZH,High(FlashAddr+FlashAddr+0) ; Access the LSB, MSB of Z
  ldi ZL,Low(FlashAddr+FlashAddr+0) ; dto., LSB of Z
  lpm
  ldi ZH,High(FlashAddr+FlashAddr+1) ; Access the MSB, MSB of Z
  ldi ZL,Low(FlashAddr+FlashAddr+1) ; dto., LSB of Z
  lpm
  ; 
  ; Formulation 2
  ldi ZH,High(2*FlashAddr+0) ; Access the LSB, MSB of Z
  ldi ZL,Low(2*FlashAddr+0) ; dto., LSB of Z
  lpm
  ldi ZH,High(2*FlashAddr+1) ; Access the MSB, MSB of Z
  ldi ZL,Low(2*FlashAddr+1) ; dto., LSB of Z
  lpm
  ;
  ; Formulation 3
  ldi ZH,High((FlashAddr<<1)|0) ; Access the LSB, MSB of Z
  ldi ZL,Low((FlashAddr<<1)|0) ; dto., LSB of Z
  lpm
  ldi ZH,High((FlashAddr<<1)|1) ; Access the MSB, MSB of Z
  ldi ZL,Low((FlashAddr<<1)|1) ; dto., LSB of Z
  lpm
Loop:
  rjmp Loop
;
ByteTable:
  .db 1
  .db 1,2
  .db 1,2,3
  .db "This is a text string"

Of course, you do not have to define an extra constant 
named FlashAddr but you can directly use the label 
ByteTable: as address in the LDI instructions. And all 
the +0 and |0 in the formulations are also superfluous 
because they have no effect.

So, whatever you prefer, it is all the same. The result is 
always in R0, as the simulated instruction shows. What 
the  simulation  also  shows  is  that  one  access  of  the 
flash memory costs three cycles (the LDI are one cycle 
each). Flash memory therefore is a little bit slower than 
SRAM and much slower than registers. 

Advanced LPM instructions
ATMEL later added the opportunity to use any register as target, the formulation of those instruction are 
lpm register,Z, where register can be any of the 32 registers. 

Also a little bit later the auto-increment was implemented. This increases the address in Z after the load  
has been performed. The effect is that  the two instructions  lpm and  adiw ZL,1 are replaced by the 

instruction lpm register,Z+. Note that this additional step does not increase the access time. 

The  opposite,  the  auto-decrease  to  read  tables  from  the  end  down  to  the  beginning,  was  also  
implemented.  Like in the case of SRAM auto-decrement, the decrementation is done prior to the load  
access.  The  formulation  is  lpm  register,-Z and  replaces  sbiw  ZL,1 and  lpm.  This  additional 
decrementation does not change access time. 

Use examples for LPM
The first example uses LPM to copy a null-terminated text from flash memory to SRAM. 
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; Prepare data segment labels
.dseg
sText:
;
.cseg
  ; Point Z to flash in memory
  ldi ZH,High(2*Text)
  ldi ZL,Low(2*Text)
  ; Point X to SRAM target location
  ldi XH,High(sText)
  ldi XL,Low(sText)
CopyText:
  lpm R16,Z+ ; Load from program memory
  st X+,R16 ; Store in SRAM
  tst R16 ; Null termination?
  brne CopyText ; No, go on
; Do'nt run into table
Loop:
  rjmp Loop
; Prepare the text in flash memory
Text:
  .db "This text to be copied to SRAM.",0x00

The whole operation lasts 259 µs. 

The second example is a little bit academic. Guess that your program needs to react to an event with 10 
different subroutines, that are of an unequal length: some short ones, some long ones. That can be the  
case if the user presses one out of ten keys. You can now check whether the initial event was zero, one,  
two, etc. and up to nine and you can call the ten different subroutines. 

Faster and more elegant is it to 

• place these ten subroutine addresses into a table, 
• to calculate the table address from the given number, 
• to read the table entry with LPM, and 
• to call the subroutine with ICALL. 

What you win here is that you are flexible in extending or reducing the number of subroutines, you are 
flexible to place them to any address you like, etc. 

This is the source code. 

; Prepare data segment labels
.dseg
sText:
;
.cseg
  ; Point Z to flash in memory
  ldi ZH,High(2*Text)
  ldi ZL,Low(2*Text)
  ldi XH,High(sText)
  ldi XL,Low(sText)
CopyText:
  lpm R16,Z+
  st X+,R16
  tst R16
  brne CopyText
; Icall part
.equ select = 0
  ldi R16,Low(RAMEND)
  out SPL,R16
  .ifdef SPH
    ldi R16,High(RAMEND)
    out SPH,R16
    .endif
  ldi R16,select ; Load selected routine number here
  lsl R16 ; Multiply by two
  ldi ZH,High(2*JmpTable) ; Point Z to table
  ldi ZL,Low(2*JmpTable)
  add ZL,R16 ; Add the doubled selection number
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  ldi R16,0 ; Add carry, if any
  adc ZH,R16
  lpm R16,Z+ ; Read LSB
  lpm ZH,Z ; Read MSB
  mov ZL,R16 ; Copy LSB to ZL
  icall ; Call the routine in Z
Loop:
  rjmp Loop
;
; Routine 0
Routine0:
  nop
  ret
Routine1:
  nop
  nop
  ret
Routine2:
  nop
  nop
  nop
  ret
Routine3:
  nop
  nop
  nop
  nop
  ret
Routine4:
  nop
  nop
  nop
  nop
  nop
  ret
Routine5:
  nop
  nop
  nop
  nop
  nop
  nop
  ret
;
; Jump table
JmpTable:
  .dw Routine0,Routine1,Routine2
  .dw Routine3,Routine4,Routine5
  ; Add additional routines here

The  simulation  has  been  started  with 
select=0, the table address of this selection 
has been calculated in Z by adding the left-
shifted  select  to  the  table's  starting 
address.  The  address  in  Z  points  to  the 
LSB of the first table entry. 

0x0033 is the first entry. 

Now the jump address has been read from 
the table and prepared for an ICALL in Z. 
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The ICALL has called the Routine0. 

With all different possible selects this jumps to
the correct routine.

Conclusion: 
LPM and its  more modern variations offer  a 
wide  variety  of  opportunities  to  handle  texts 
and to access smaller or larger tables in the 
large  flash  memory.  Effective  programming 
very often involves such loads from program 
flash. 
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Annex

Instructions sorted by function
For the abbreviations used see the list of abbreviations.

Function Sub function instruction Flags Clk

Register
set

0 CLR r1 Z N V 1

255 SER rh   1

Constant LDI rh,c255   1

Copy

Register => Register MOV r1,r2   1

SRAM => Register, direct LDS r1,c65535   2

SRAM => Register LD r1,rp   2

SRAM => Register and INC LD r1,rp+   2

DEC, SRAM => Register LD r1,-rp   2

SRAM, displaced => Register LDD r1,ry+k63   2

Port => Register IN r1,p1   1

Stack => Register POP r1   2

Program storage Z => R0 LPM   3

Register => SRAM, direct STS c65535,r1   2

Register => SRAM ST rp,r1   2

Register => SRAM and INC ST rp+,r1   2

DEC, Register => SRAM ST -rp,r1   2

Register => SRAM, displaced STD ry+k63,r1   2

Register => Port OUT p1,r1   1

Register => Stack PUSH r1   2

Add

8 Bit, +1 INC r1 Z N V 1

8 Bit ADD r1,r2 Z C N V H 1

8 Bit + Carry ADC r1,r2 Z C N V H 1

16 Bit, constant ADIW rd,k63 Z C N V S 2

Subtract

8 Bit, -1 DEC r1 Z N V 1

8 Bit SUB r1,r2 Z C N V H 1

8 Bit, constant SUBI rh,c255 Z C N V H 1

8 Bit - Carry SBC r1,r2 Z C N V H 1

8 Bit - Carry, constant SBCI rh,c255 Z C N V H 1

16 Bit SBIW rd,k63 Z C N V S 2

Shift

logic, left LSL r1 Z C N V 1

logic, right LSR r1 Z C N V 1

Rotate, left over Carry ROL r1 Z C N V 1

Rotate, right over Carry ROR r1 Z C N V 1

Arithmetic, right ASR r1 Z C N V 1

Nibble exchange SWAP r1   1

Binary

And AND r1,r2 Z N V 1

And, constant ANDI rh,c255 Z N V 1

Or OR r1,r2 Z N V 1

Or, constant ORI rh,c255 Z N V 1

Exclusive-Or EOR r1,r2 Z N V 1

Ones-complement COM r1 Z C N V 1

Twos-complement NEG r1 Z C N V H 1

Bits
change

Register, set SBR rh,c255 Z N V 1

Register, clear CBR rh,255 Z N V 1
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Function Sub function instruction Flags Clk

Register, copy to T-Flag BST r1,b7 T 1

Register, copy from T-Flag BLD r1,b7   1

Port, set SBI pl,b7   2

Port, clear CBI pl,b7   2

Status bit
set

Zero-Flag SEZ Z 1

Carry Flag SEC C 1

Negative Flag SEN N 1

Twos complement carry Flag SEV V 1

Half carry Flag SEH H 1

Signed Flag SES S 1

Transfer Flag SET T 1

Interrupt Enable Flag SEI I 1

Status bit
clear

Zero-Flag CLZ Z 1

Carry Flag CLC C 1

Negative Flag CLN N 1

Twos complement carry Flag CLV V 1

Half carry Flag CLH H 1

Signed Flag CLS S 1

Transfer Flag CLT T 1

Interrupt Enable Flag CLI I 1

Compare

Register, Register CP r1,r2 Z C N V H 1

Register, Register + Carry CPC r1,r2 Z C N V H 1

Register, constant CPI rh,c255 Z C N V H 1

Register, ≤0 TST r1 Z N V 1

Immediate
Jump

Relative RJMP c4096   2

Indirect, Address in Z IJMP   2

Subroutine, relative RCALL c4096   3

Subroutine, Address in Z ICALL   3

Return from Subroutine RET   4

Return from Interrupt RETI I 4

Conditional
Jump

Status bit set BRBS b7,c127   1/2

Status bit clear BRBC b7,c127   1/2

Jump if equal BREQ c127   1/2

Jump if not equal BRNE c127   1/2

Jump if carry set BRCS c127   1/2

Jump if carry clear BRCC c127   1/2

Jump if equal or greater BRSH c127   1/2

Jump if lower BRLO c127   1/2

Jump if negative BRMI c127   1/2

Jump if positive BRPL c127   1/2

Jump if greater or equal (Signed) BRGE c127   1/2

Jump if lower than zero (Signed) BRLT c127   1/2

Jump on half carry set BRHS c127   1/2

Jump if half carry clear BRHC c127   1/2

Jump if T-Flag set BRTS c127   1/2

Jump if T-Flag clear BRTC c127   1/2

Jump if Twos complement carry set BRVS c127   1/2

Jump if Twos complement carry clear BRVC c127   1/2
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Function Sub function instruction Flags Clk

Jump if Interrupts enabled BRIE c127   1/2

Jump if Interrupts disabled BRID c127   1/2

Conditioned
Jumps

Register bit=0 SBRC r1,b7   1/2/3

Register bit=1 SBRS r1,b7   1/2/3

Port bit=0 SBIC pl,b7   1/2/3

Port bit=1 SBIS pl,b7   1/2/3

Compare, jump if equal CPSE r1,r2   1/2/3

Others

No Operation NOP   1

Sleep SLEEP   1

Watchdog Reset WDR   1

Directives and Instruction lists in alphabetic order

Assembler directives in alphabetic order

Directive ... means ...

.CSEG Assemble to the Code segment

.DB Insert data byte(s)

.DEF Define a register name

.DW Insert data word(s)

.ENDMACRO Macro is complete, stop recording

.ESEG Assemble to the EEPROM segment

.EQU Define a constant by name and set its value

.INCLUDE Insert a file's content at this place as if it would be part of this file

.MACRO Start to record the following instructions as a macro definition

.ORG Set the assembler output address to the following number

html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/PORTS.html#SLEEP
html/avr_en/beginner/JUMP.html#NOP
html/avr_en/beginner/JUMP.html#Cpse
html/avr_en/beginner/JUMP.html#SBICS
html/avr_en/beginner/JUMP.html#SBICS
html/avr_en/beginner/JUMP.html#SBRCS
html/avr_en/beginner/JUMP.html#SBRCS
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx


Avr-Asm-Tutorial 95 http://www.avr-asm-tutorial.net

Instructions in alphabetic order

Instruction ... performs ...

ADC r1,r2 Add r2 with Carry to r1 and store result in r1

ADD r1,r2 Add r2 to r1 and store result in r1

ADIW rd,k63 Add the immediate word constant k63 to the double register rd+1:rd (rd = R24, R26, R28, R30)

AND r1,r2 And bit wise r1 with the value in r2 and store the result in r1

ANDI rh,c255 And bit wise the upper register rh with the constant c255 and store the result in rh

ASR r1 Arithmetic shift the register r1 right

BLD r1,b7 Copy the T-flag in the status register to bit b7 in register r1

BRCC c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRCS c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is set

BREQ c127 Branch by c127 instructions for- or backwards if the zero flag in the status register is set

BRGE c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRHC c127 Branch by c127 instructions for- or backwards if the half carry flag in the status register is clear

BRHS c127 Branch by c127 instructions for- or backwards if the half carry flag in the status register is set

BRID c127 Branch by c127 instructions for- or backwards if the interrupt flag in the status register is clear

BRIE c127 Branch by c127 instructions for- or backwards if the interrupt flag in the status register is set

BRLO c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is set

BRLT c127 Branch by c127 instructions for- or backwards if the negative and overflow flag in the status register are  
set

BRMI c127 Branch by c127 instructions for- or backwards if the negative flag in the status register is set

BRNE c127 Branch by c127 instructions for or backwards if the zero flag in the status register is set

BRPL c127 Branch by c127 instructions for- or backwards if the negative flag in the status register is clear

BRSH c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRTC c127 Branch by c127 instructions for- or backwards if the transfer flag in the status register is clear

BRTS c127 Branch by c127 instructions for- or backwards if the transfer flag in the status register is set

BRVC c127 Branch by c127 instructions for- or backwards if the overflow flag in the status register is clear

BRVS c127 Branch by c127 instructions for- or backwards if the overflow flag in the status register is set

BST r1,b7 Copy the bit b7 in register r1 to the transfer flag in the status register

CBI pl,b7 Clear bit b7 in the lower port pl

CBR rh,k255 Clear all the bits in the upper register rh, that are set in the constant k255 (mask)

CLC Clear the carry bit in the status register

CLH Clear the half carry bit in the status register

CLI Clear the interrupt bit in the status register, disable interrupt execution

CLN Clear the negative bit in the status register

CLR r1 Clear the register r1

CLS Clear the signed flag in the status register

CLT Clear the transfer flag in the status register

CLV Clear the overflow flag in the status register

CLZ Clear the zero flag in the status register

COM r1 Complement register r1 (ones complement)

CP r1,r2 Compare register r1 with register r2

CPC r1,r2 Compare register r1 with register r2 and the carry flag

CPI rh,c255 Compare the upper register rh with the immediate constant c255

CPSE r1,r2 Compare r1 with r2 and jump over the next instruction if equal

DEC r1 Decrement register r1 by 1

EOR r1,r2 Exclusive bit wise Or register r1 with register r2 and store result in r1

ICALL Call the subroutine at the address in register pair Z (ZH:ZL, R31:R30)

IJMP IN r1,p1 Jump to the address in register pair Z (ZH:ZL, R31:R30)

INC r1 Increment register r1 by 1

LD r1,(rp,rp+,-rp) Load the register r1 with the content at the location that register pair rp (X, Y or Z) points to (rp+ 
increments the register pair after loading, -rp decrements the register pair prior to loading)

LDD r1,ry+k63 Load the register r1 with the content at the location that register pair ry (Y or Z), displaced by  the 
constant k63, points to

LDI rh,c255 Load the upper register rh with the constant c255
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LDS r1,c65535 Load register r1 with the content at location c65535

LPM
LPM r1
LPM r1,Z+
LPM r1,-Z

Load register R0 with the content of the flash memory at the location that register pair Z (ZH:ZL, 
R31:R30), divided by 2, points to, bit 0 in Z points to lower (0) or upper (1) byte in flash (Load register 
r1, Z+ increment Z after loading, -Z decrement Z prior to loading)

LSL r1 Logical shift left register r1

LSR r1 Logical shift right register r1

MOV r1,r2 Move register r2 to register r1

NEG r1 Subtract register r1 from Zero

NOP No operation

OR r1,r2 Bit wise or register r1 with register r2 and store result in register r1

ORI rh,c255 Bit wise or the upper register r1 with the constant c255

OUT p1,r1 Copy register r1 to I/O port p1

POP r1 Increase the stack pointer and pop the last byte on stack to register r1

PUSH r1 Push register r1 to the stack and decrease the stack pointer

RCALL c4096 Push program counter on stack and add signed constant c4096 to the program counter (relative call)

RET Pop program counter from stack (return to call address)

RETI Enable interrupts and pop program counter from stack (return from interrupt)

RJMP c4096 Relative jump, add signed constant c4096 to program address 

ROL r1 Rotate register r1 left, copy carry flag to bit 0

ROR r1 Rotate register r1 right, copy carry flag to bit 7

SBC r1,r2 Subtract r2 and the carry flag from register r1 and write result to r1

SBCI rh,c255 Subtract constant c255 and carry flag from the upper register rh and write result to rh

SBI pl,b7 Set bit b7 in the lower port pl

SBIC pl,b7 If bit b7 in the lower port pl is clear, jump over the next instruction

SBIS pl,b7 If bit b7 in the lower port pl is set, jump over the next instruction

SBIW rd,k63 Subtract the constant k63 from the register pair rd (rd+1:rd, rd = R24, R26, R28, R30)

SBR rh,c255 Set the bits in the upper register rh, that are one in constant c255

SBRC r1,b7 If bit b7 in register r1 is clear, jump over next instruction

SBRS r1,b7 If bit b7 in register r1 is set, jump over next instruction

SEC Set carry flag in status register

SEH Set half carry flag in status register

SEI Set interrupt flag in status register, enable interrupt execution

SEN Set negative flag in status register

SER rh Set all bits in the upper register rh

SES Set sign flag in status register

SET Set transfer flag in status register

SEV Set overflow flag in status register

SEZ Set zero flag in status register

SLEEP Put controller to the selected sleep mode

ST (rp/rp+/-rp),r1 Store content in register r1 to the memory location in register pair rp (rp = X, Y, Z; rp+: increment 
register pair after store; -rp: decrement register pair prior to store)

STD ry+k63,r1 Store the content of register r1 at the location that register pair ry (Y or Z), displaced by the constant 
k63, points to

STS c65535,r1 Store the content of register r1 at the location c65535

SUB r1,r2 Subtract register r2 from register r1 and write result to r1

SUBI rh,c255 Subtract the constant c255 from the upper register rh

SWAP r1 Exchange upper and lower nibble in register r1

TST r1 Compare register r1 with Zero

WDR Watchdog reset
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Port details
The table of the relevant ports in the ATMEL AVR types AT90S2313, 2323 and 8515. Byte wise accessible  
ports or register pairs are not displayed in detail. No warranty for correctness, see the original data sheets!

Status-Register, Accumulator flags

Port Function Port-Address RAM-Address

SREG Status Register Accumulator 0x3F 0x5F

7 6 5 4 3 2 1 0

I T H S V N Z C

Bit Name Meaning Opportunities Conmmand

7 I Global Interrupt Flag
0: Interrupts disabled CLI

1: Interrupts enabled SEI

6 T Bit storage
0: Stored bit is 0 CLT

1: Stored bit is 1 SET

5 H Halfcarry-Flag
0: No halfcarry occurred CLH

1: Halfcarry occurred SEH

4 S Sign-Flag
0: Sign positive CLS

1: Sign negative SES

3 V Two's complement-Flag
0: No carry occurred CLV

1: Carry occurred SEV

2 N Negative-Flag
0: Result was not negative/smaller CLN

1: Result was negative/smaller SEN

1 Z Zero-Flag
0: Result was not zero/unequal CLZ

1: Result was zero/equal SEZ

0 C Carry-Flag
0: No carry occurred CLC

1: Carry occurred SEC

Stackpointer

Port Function Port-Address RAM-Address

SPL/
SPH

Stackpointer 003D/0x3E 0x5D/0x5E

Name Meaning Availability

SPL
Low-Byte of Stack 
pointer

From AT90S2313 upwards, not in 1200

SPH
High-Byte of Stack 
pointer

From AT90S8515 upwards, only in devices with >256 bytes internal SRAM

SRAM and External Interrupt control

Port Function Port-Address RAM-Address

MCUCR MCU General Control Register 0x35 0x55

7 6 5 4 3 2 1 0

SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

Bit Name Meaning Opportunities

7 SRE Ext. SRAM Enable
0=No external SRAM connected

1=External SRAM connected
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Bit Name Meaning Opportunities

6 SRW Ext. SRAM Wait States
0=No extra wait state on external SRAM

1=Additional wait state on external SRAM

5 SE Sleep Enable
0=Ignore SLEEP instructions

1=SLEEP on instruction

4 SM Sleep Mode
0=Idle Mode (Half sleep)

1=Power Down Mode (Full sleep)

3 ISC11

2 ISC10
Interrupt control Pin INT1
(connected to GIMSK)

00: Low-level initiates Interrupt

01: Undefined

10: Falling edge triggers interrupt

11: Rising edge triggers interrupt

1 ISC01

0 ISC00
Interrupt control Pin INT0
(connected to GIMSK)

00: Low-level initiates interrupt

01: Undefined

10: Falling edge triggers interrupt

11: Rising edge triggers interrupt

External Interrupt Control

Port Function Port-Address RAM-Address

GIMSK General Interrupt Maskregister 0x3B 0x5B

7 6 5 4 3 2 1 0

INT1 INT0 - - - - - -

Bit Name Meaning Opportunities

7 INT1
Interrupt by external pin INT1
(connected to mode in MCUCR)

0: External INT1 disabled

1: External INT1 enabled

6 INT0
Interrupt by external Pin INT0
(connected to mode in MCUCR)

0: External INT0 disabled

1: External INT0 enabled

0...5 (Not used)

Port Function Port-Address RAM-Address

GIFR General Interrupt Flag Register 0x3A 0x5A

7 6 5 4 3 2 1 0

INTF1 INTF0 - - - - - -

Bit Name Meaning Opportunities

7 INTF1 Interrupt by external pin INT1 occurred Automatic clear by execution of the Int-Routine or
Clear by instruction6 INTF0 Interrupt by external pin INT0 occurred

0...5 (Not used)

Timer Interrupt Control

Port Function Port-Address RAM-Address

TIMSK Timer Interrupt Maskregister 0x39 0x59

7 6 5 4 3 2 1 0

TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -
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Bit Name Meaning Opportunities

7 TOIE1 Timer/Counter 1 Overflow-Interrupt 0: No Int at overflow

1: Int at overflow

6 OCIE1A Timer/Counter 1 Compare A Interrupt 0: No Int at equal A

1: Int at equal A

5 OCIE1B Timer/Counter 1 Compare B Interrupt 0: No Int at B

1: Int at equal B

4 (Not used)

3 TICIE1 Timer/Counter 1 Capture Interrupt 0: No Int at Capture

1: Int at Capture

2 (Not used)

1 TOIE0 Timer/Counter 0 Overflow-Interrupt 0: No Int at overflow

1: Int at overflow

0 (Not used)

Port Function Port-Address RAM-Address

TIFR Timer Interrupt Flag Register 0x38 0x58

7 6 5 4 3 2 1 0

TOV1 OCF1A OCF1B - ICF1 - TOV0 -

Bit Name Meaning Opportunities

7 TOV1 Timer/Counter 1 Overflow reached
Interrupt-Mode:
Automatic Clear
by execution of the
Int-Routine

OR

Polling-Mode:
Clear by
instruction

6 OCF1A Timer/Counter 1 Compare A reached

5 OCF1B Timer/Counter 1 Compare B reached

4 (Not used)

3 ICF1 Timer/Counter 1 Capture-Event occurred

2 (not used)

1 TOV0 Timer/Counter 0 Overflow occurred

0 (not used)

Timer/Counter 0

Port Function Port-Address RAM-Address

TCCR0 Timer/Counter 0 Control Register 0x33 0x53

7 6 5 4 3 2 1 0

- - - - - CS02 CS01 CS00

Bit Name Meaning Opportunities

2..0 CS02..CS00 Timer Clock

000: Stop Timer

001: Clock = Chip clock

010: Clock = Chip clock / 8

011: Clock = Chip clock / 64

100: Clock = Chip clock / 256

101: Clock = Chip clock / 1024

110: Clock = falling edge of external Pin T0

111: Clock = rising edge of external Pin T0

3..7 (not used)
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Port Function Port-Address RAM-Address

TCNT0 Timer/Counter 0 count register 0x32 0x52

Timer/Counter 1

Port Function Port-Address RAM-Address

TCCR1A Timer/Counter 1 Control Register A 0x2F 0x4F

7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 - - PWM11 PWM10

Bit Name Meaning Opportunities

7 COM1A1

6 COM1A0
Compare Output A

5 COM1B1

4 COM1B0
Compare Output B

00: OC1A/B not connected
01: OC1A/B changes polarity
10: OC1A/B to zero
11: OC1A/B to one

3

2
(not used)

1..0
PWM11
PWM10

Pulse width modulator

00: PWM off
01: 8-Bit PWM
10: 9-Bit PWM
11: 10-Bit PWM

Port Function Port-Address RAM-Address

TCCR1B Timer/Counter 1 Control Register B 0x2E 0x4E

7 6 5 4 3 2 1 0

ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

Bit Name Meaning Opportunities

7 ICNC1
Noise Canceler
on ICP-Pin

0: disabled, first edge starts sampling

1: enabled, min four clock cycles

6 ICES1
Edge selection
on Capture

0: falling edge triggers Capture

1: rising edge triggers Capture

5..4 (not used)

3 CTC1
Clear at
Compare Match A

1: Counter set to zero if equal

2..0 CS12..CS10 Clock select

000: Counter stopped
001: Clock
010: Clock / 8
011: Clock / 64
100: Clock / 256
101: Clock / 1024
110: falling edge external Pin T1
111: rising edge external Pin T1

Port Function Port-Address RAM-Address

TCNT1L/H Timer/Counter 1 count register 0x2C/0x2D 0x4C/0x4D
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Port Function Port-Address RAM-Address

OCR1AL/H Timer/Counter 1 Output Compare register A 0x2A/0x2B 0x4A/0x4B hex

Port Function Port-Address RAM-Address

OCR1BL/H Timer/Counter 1 Output Compare register B 0x28/0x29 0x48/0x49

Port Function Port-Address RAM-Address

ICR1L/H Timer/Counter 1 Input Capture Register 0x24/0x25 0x44/0x45

Watchdog-Timer

Port Function Port-Address RAM-Address

WDTCR Watchdog Timer Control Register 0x21 0x41

7 6 5 4 3 2 1 0

- - - WDTOE WDE WDP2 WDP1 WDP0

Bit Name Meaning WDT-cycle at 5.0 Volt

7..5 (not used)

4 WDTOE Watchdog Turnoff Enable
Previous set to
disabling of WDE required

3 WDE Watchdog Enable 1: Watchdog active

2..0 WDP2..WDP0 Watchdog Timer Prescaler

000: 15 ms
001: 30 ms
010: 60 ms
011: 120 ms
100: 240 ms
101: 490 ms
110: 970 ms
111: 1,9 s

EEPROM

Port Function Port-Address RAM-Address

EEARL/H EEPROM Address Register 0x1E/0x1F 0x3E/0x3F

EEARH only in types with more than 256 Bytes EEPROM (from AT90S8515 upwards) 

Port Function Port-Address RAM-Address

EEDR EEPROM Data Register 0x1D 0x3D

Port Function Port-Address RAM-Address

EECR EEPROM Control Register 0x1C 0x3C

7 6 5 4 3 2 1 0

- - - - - EEMWE EEWE EERE
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Bit Name Meaning Function

7..
3

(not used)

2 EEMWE EEPROM Master Write Enable Previous set enables write cycle

1 EEWE EEPROM Write Enable Set to initiate write

0 EERE EEPROM Read Enable Set initiates read

Serial Peripheral Interface SPI

Port Function Port-Address RAM-Address

SPCR SPI Control Register 0x0D 0x2D

7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

Bit Name Meaning Function

7 SPIE SPI Interrupt Enable
0: Interrupts disabled

1: Interrupts enabled

6 SPE SPI Enable
0: SPI disabled

1: SPI enabled

5 DORD Data Order
0: MSB first

1: LSB first

4 MSTR Master/Slave Select
0: Slave

1: Master

3 CPOL Clock Polarity
0: Positive Clock Phase

1: Negative Clock Phase

2 CPHA Clock Phase
0: Sampling at beginning of Clock Phase

1: Sampling at end of Clock Phase

1 SPR1

0 SPR0
SCK clock frequency

00: Clock / 4

01: Clock / 16

10: Clock / 64

11: Clock / 128

Port Function Port-Address RAM-Address

SPSR SPI Status Register 0x0E 0x2E

7 6 5 4 3 2 1 0

SPIF WCOL - - - - - -

Bit Name Meaning Function

7 SPIF SPI Interrupt Flag Interrupt request

6 WCOL Write Collision Flag Write collission occurred

5..0 (not used)

Port Function Port-Address RAM-Address

SPDR SPI Data Register 0x0F 0x2F
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UART

Port Function Port-Address RAM-Address

UDR UART I/O Data Register 0x0C 0x2C

Port Function Port-Address RAM-Address

USR UART Status Register 0x0B 0x2B

7 6 5 4 3 2 1 0

RXC TXC UDRE FE OR - - -

Bit Name Meaning Function

7 RXC UART Receive Complete 1: Char received

6 TXC UART Transmit Complete 1: Shift register empty

5 UDRE UART Data Register Empty 1: Transmit register available

4 FE Framing Error 1: Illegal Stop-Bit

3 OR Overrun 1: Lost char

2..0 (not used)

Port Function Port-Address RAM-Address

UCR UART Control Register 0x0A 0x2A

7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

Bit Name Meaning Function

7 RXCIE RX Complete Interrupt Enable 1: Interrupt on received char

6 TXCIE TX Complete Interrupt Enable 1: Interrupt at transmit complete

5 UDRIE Data Register Empty Interrupt Enable 1: Interrupt on transmit buffer empty

4 RXEN Receiver Enable 1: Receiver enabled

3 TXEN Transmitter Enable 1: Transmitter enabled

2 CHR9 9-bit Characters 1: Char length 9 Bit

1 RXB8 Receive Data Bit 8 (holds 9th data bit on receive)

0 TXB8 Transmit Data Bit 8 (write 9th data bit for transmit here)

Port Function Port-Address RAM-Address

UBRR UART Baud Rate Register 0x09 0x29

Analog Comparator

Port Function Port-Address RAM-Address

ACSR Analog Comparator Control and Status Register 0x08 0x28

7 6 5 4 3 2 1 0

ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

Bit Name Meaning Function

7 ACD Disable Disable Comparators

6 (not used)

5 ACO Comparator Output Read: Output of the Comparators

4 ACI Interrupt Flag 1: Interrupt request
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Bit Name Meaning Function

3 ACIE Interrupt Enable 1: Interrupts enabled

2 ACIC Input Capture Enable 1: Connect to Timer 1 Capture

1 ACIS1

0 ACIS0
Input Capture Enable

00: Interrupt on edge change

01: (not used)

10: Interrupt on falling edge

11: Interrupt on rising edge

I/O Ports

Port Register Function Port-Address RAM-Address

A

PORTA Data Register 0x1B 0x3B

DDRA Data Direction Register 0x1A 0x3A

PINA Input Pins Address 0x19 0x39

B

PORTB Data Register 0x18 0x38

DDRB Data Direction Register 0x17 0x37

PINB Input Pins Address 0x16 0x36

C

PORTC Data Register 0x15 0x35

DDRC Data Direction Register 0x14 0x34

PINC Input Pins Address 0x13 0x33

D

PORTD Data Register 0x12 0x32

DDRD Data Direction Register 0x11 0x31

PIND Input Pins Address 0x10 0x30

Ports, alphabetic order
ACSR, Analog Comparator Control and Status Register
DDRx, Port x Data Direction Register
EEAR, EEPROM address Register
EECR, EEPROM Control Register
EEDR, EEPROM Data Register
GIFR, General Interrupt Flag Register
GIMSK, General Interrupt Mask Register
ICR1L/H, Input Capture Register 1
MCUCR, MCU General Control Register
OCR1A, Output Compare Register 1 A
OCR1B, Output Compare Register 1 B
PINx, Port Input Access
PORTx, Port x Output Register
SPL/SPH, Stackpointer
SPCR, Serial Peripheral Control Register
SPDR, Serial Peripheral Data Register
SPSR, Serial Peripheral Status Register
SREG, Status Register
TCCR0, Timer/Counter Control Register, Timer 0
TCCR1A, Timer/Counter Control Register 1 A
TCCR1B, Timer/Counter Control Register 1 B
TCNT0, Timer/Counter Register, Counter 0
TCNT1, Timer/Counter Register, Counter 1
TIFR, Timer Interrupt Flag Register
TIMSK, Timer Interrupt Mask Register
UBRR, UART Baud Rate Register
UCR, UART Control Register
UDR, UART Data Register
WDTCR, Watchdog Timer Control Register

List of abbreviations
The abbreviations used are chosen to include the value range. Register pairs are named by the lower of 
the two registers. Constants in jump instructions are automatically calculated from the respective labels  
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during assembly. 

Category Abbrev. Means ... Value range

Register

r1 Ordinary Source and Target register

r2 Ordinary Source register
R0..R31

rh Upper page register R16..R31

rd Twin register R24(R25), R26(R27), R28(R29), R30(R31)

rp Pointer register X=R26(R27), Y=R28(R29), Z=R30(R31)

ry Pointer register with displacement Y=R28(R29), Z=R30(R31)

Constant

k63 Pointer-constant 0..63

c127 Conditioned jump distance -64..+63

c255 8-Bit-Constant 0..255

c4096 Relative jump distance -2048..+2047

c65535 16-Bit-Address 0..65535

Bit b7 Bit position 0..7

Port
p1 Ordinary Port 0..63

pl Lower page port 0..31
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