
Beginners Introduction to the
Assembly Language of

ATMEL-AVR-Microprocessors

by

Gerhard Schmidt

http://www.avr-asm-tutorial.net

September 2021

History:

Added chapters on binary floating points and on memory access in September 2021

Added chapter on code structures in April 2009

Additional corrections and updates as of January 2008

Corrected version as of July 2006

Original version of December 2003

http://www.avr-asm-tutorial.net/

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

Content
Why learning Assembler?..1

Short and easy...1
Fast and quick..1
Assembler is easy to learn...1
AVRs are ideal for learning assembler..1
Test it!..2

Hardware for AVR-Assembler-Programming...3
The ISP-Interface of the AVR-processor family...3
Programmer for the PC-Parallel-Port..3
Experimental boards..4

Experimental board with an ATtiny13...4
Experimental board with an AT90S2313/ATmega2313..5

Ready-to-use commercial programming boards for the AVR-family...6
STK200...6
STK500...6
AVR Dragon...7

Tools for AVR assembly programming...8
From a text file to instruction words in the flash memory..8

The editor..8
Structuring assembler code...9
Comments...9
Things to be written on top...9
Things that should be done at program start...10
Structuring of program code...10
The assembler...13

Programming the chips..14
Simulation in the studio...14
What is a register?...18
Different registers..20
Pointer-registers...20

Accessing memory locations with pointers..20
Reading program flash memory with the Z pointer..20
Tables in the program flash memory..21
Accessing registers with pointers...21

Recommendation for the use of registers..22
Ports...23

What is a Port?..23
Write access to ports...23
Read access to ports..24
Read-Modify-Write access to ports..24
Memory mapped port access..24
Details of relevant ports in the AVR..25

The status register as the most used port...25
Port details...26

SRAM..27
Using SRAM in AVR assembler language...27
What is SRAM?...27
For what purposes can I use SRAM?..27
How to use SRAM?...27

Direct addressing..27
Pointer addressing...28
Pointer with offset...28

Use of SRAM as stack...28
Defining SRAM as stack..29
Use of the stack...29
Bugs with the stack operation...30

Jumping and Branching..31
Controlling sequential execution of the program..31

What happens during a reset?...31
Linear program execution and branches..32

Branching..32
Timing during program execution...33
Macros and program execution...33

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

Subroutines..34
Interrupts and program execution..35

Calculations..38
Number systems in assembler...38

Positive whole numbers (bytes, words, etc.)..38
Signed numbers (integers)..38
Binary Coded Digits, BCD...38
Packed BCDs..39
Numbers in ASCII-format..39

Bit manipulations..39
Shift and rotate..40
Adding, subtracting and comparing..41

Adding and subtracting 16-bit numbers...41
Comparing 16-bit numbers...41
Comparing with constants..41
Packed BCD math...42

Format conversion for numbers...43
Conversion of packed BCDs to BCDs, ASCII or Binaries..43
Conversion of Binaries to BCD..43

Multiplication..43
Decimal multiplication...43
Binary multiplication..44
AVR-Assembler program...44
Binary rotation..45
Multiplication in the studio...45

Hardware multiplication..47
Hardware multiplication of 8-by-8-bit binaries..47
Hardware multiplication of a 16- by an 8-bit-binary..48
Hardware multiplication of a 16- by a 16-bit-binary..50
Hardware multiplication of a 16- by a 24-bit-binary..52

Division...53
Decimal division...53
Binary division...53
Program steps during division..54
Division in the simulator..54

Number conversion...56
Decimal Fractions..56

Linear conversions..56
Example 1: 8-bit-AD-converter with fixed decimal output..57
Example 2: 10-bit-AD-converter with fixed decimal output..58

Floating point numbers in assembler language...59
Floating points, if necessary...59
The format of floating point numbers...59
Conversion of binary to decimal number format..60
Conclusion:...60

Converting floating point numbers to decimal in assembler language...60
Allocation of numbers..60
Converting the mantissa to decimal..61
Converting the exponent bits..64
Rounding the decimal mantissa..66
Conversion from BCD to ASCII..67
Execution times..67

Faster than above: converting a 40-bit-binary to decimal...67
Conclusion..68

Floating point arithmetic in assembly language..68
Converting decimals to binary floating point numbers in assembler language..............................68

Decimal number formats..68
The assembler software for the conversion..69

Detecting the negative sign...69
Read the decimal mantissa and convert it to a binary integer...69
Calculate the binary mantissa..69
Determine the decimal exponent and convert it..69
Normalization and sign processing...70
Results...70

Conclusion...70

Avr-Asm-Tutorial 4 http://www.avr-asm-tutorial.net

Address modes in AVRs..71
Accessing SRAM, registers and port registers..71
Accessing SRAM locations with fixed addresses...71
Accessing SRAM location with pointers..72
Accessing SRAM location with increasing pointers...73
Accessing SRAM location with decreasing pointers..74
Accessing SRAM locations with displacement addressing...76
Accessing port registers...78
Accessing classical port registers..78
Access to extended port registers..79
Access with pointers, example: the circular LED light...79
Accessing EEPROM...82
EEPROM initiation with the .ESEG directive..82
EEPROM port registers...82
Writing the EEPROM address..83
Reading from the EEPROM..84
Write access to the EEPROM..84
Flash memory accesses..86
The .CSEG directive..86
The LPM instruction...87
Advanced LPM instructions..88
Use examples for LPM..88

Annex...92
Instructions sorted by function..92
Directives and Instruction lists in alphabetic order...94

Assembler directives in alphabetic order..94
Instructions in alphabetic order..95

Port details...97
Status-Register, Accumulator flags..97
Stackpointer..97
SRAM and External Interrupt control..97
External Interrupt Control...98
Timer Interrupt Control..98
Timer/Counter 0..99
Timer/Counter 1..100
Watchdog-Timer...101
EEPROM..101
Serial Peripheral Interface SPI..102
UART...103
Analog Comparator..103
I/O Ports..104

Ports, alphabetic order...104
List of abbreviations..104

Avr-Asm-Tutorial 1 http://www.avr-asm-tutorial.net

Why learning Assembler?
Assembler or other languages, that is the question. Why should I learn another language, if I already
learned other programming languages? The best argument: while you live in France you are able to get
through by speaking English, but you will never feel at home then, and life remains complicated. You can
get through with this, but it is rather inappropriate. If things need a hurry, you should use the country's
language.

Many people that are deeper into programming AVRs and use higher-level languages in their daily work
recommend that beginners start with learning assembly language. The reason is that sometimes, namely
in the following cases:

● if bugs have to be analyzed,

● if the program executes different than designed and expected,

● if the higher-level language doesn't support the use of certain hardware features,

● if time-critical in line routines require assembly language portions,

it is necessary to understand assembly language, e.g. to understand what the higher-level language
compiler produced. Without understanding assembly language you do not have a chance to proceed
further in these cases.

Short and easy
Assembler instructions translate one by one to executed machine instructions. The processor needs only
to execute what you want it to do and what is necessary to perform the task. No extra loops and
unnecessary features blow up the generated code. If your program storage is short and limited and you
have to optimize your program to fit into memory, assembler is choice 1. Shorter programs are easier to
debug, every step makes sense.

Fast and quick
Because only necessary code steps are executed, assembly programs are as fast as possible. The
duration of every step is known. Time critical applications, like time measurements without a hardware
timer, that should perform excellent, must be written in assembler. If you have more time and don't mind if
your chip remains 99% in a wait state type of operation, you can choose any language you want.

Assembler is easy to learn
It is not true that assembly language is more complicated or not as easy to understand than other
languages. Learning assembly language for whatever hardware type brings you to understand the basic
concepts of any other assembly language dialects. Adding other dialects later is easy. As some features
are hardware-dependent optimal code requires some familiarity with the hardware concept and the dialect.
What makes assembler sometimes look complicated is that it requires an understanding of the controller's
hardware functions. Consider this an advantage: by learning assembly language you simultaneously learn
more about the hardware. Higher level languages often do not allow you to use special hardware features
and so hide these functions.

The first assembly code does not look very attractive, with every 100 additional lines programmed it looks
better. Perfect programs require some thousand lines of code of exercise, and optimization requires lots of
work. The first steps are hard in any language. After some weeks of programming you will laugh if you go
through your first code. Some assembler instructions need some months of experience.

AVRs are ideal for learning assembler
Assembler programs are a little bit silly: the chip executes anything you tell it to do, and does not ask you if
you are sure overwriting this and that. All protection features must be programmed by you, the chip does
exactly anything like it is told, even if it doesn't make any sense. No window warns you, unless you
programmed it before.

To correct typing errors is as easy or complicated as in any other language. Basic design errors, the more
tricky type of errors, are also as complicated to debug like in any other computer language. But: testing
programs on ATMEL chips is very easy. If it does not do what you expect it to do, you can easily add some
diagnostic lines to the code, reprogram the chip and test it. Bye, bye to you EPROM programmers, to the
UV lamps used to erase your test program, to you pins that don't fit into the socket after having them
removed some dozen times.

Changes are now programmed fast, compiled in no time, and either simulated in the studio or checked in-
circuit. No pin is removed, and no UV lamp gives up just in the moment when you had your excellent idea
about that bug.

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

Test it!
Be patient doing your first steps! Most of the special features of other computer languages don't make any
sense in assembler, so If you are familiar with another (high-level) language: forget it for the first time, it
blocks you in learning. Behind every assembler language there is a certain hardware concept, so learn
hardware AND software simultaneously.

The first five instructions are not easy to learn, after that your learning speed rises fast. After you had your
first lines: grab the instruction set list and lay back in the bathtub, wondering what all the other instructions
are like.

Serious warning: Don't try to program a mega-machine to start with. This does not make sense in any
computer language, and only produces frustration and hurdles. Start with the small „Hello world“-like
examples, e.g. turning some LEDs on and off for a certain time, then explore the hardware features a bit
deeper.

Recommendation: Comment your subroutines and store them in a special directory, if debugged: you will
need them, or the ideas behind that, again in a short time.

If you need a good tool to learn assembler for AVRs: the simulator avr_sim, that can be downloaded here,
is an easy to use software that executes self-made assembler software and displays the internal hardware
as if you are yourself inside the controller.

Have success!

http://www.avr-asm-tutorial.net/avr_sim/index_en.html

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

Hardware for AVR-Assembler-Programming
Learning assembler requires some simple hardware equipment to test your programs, and see if it works in
practice.

This section shows two easy schematics that enable you to home brew the required hardware and gives
you the necessary hints on the required background. This hardware really is easy to build. I know nothing
easier than that to test your first software steps. If you like to make more experiments, leave some more
space for future extensions on your experimental board.

If you don't like the smell of soldering, you can buy a ready-to-use board, too. The available boards are
characterized in this section below.

The ISP-Interface of the AVR-processor family
Before going into practice, we have to learn a few essentials on the serial programming mode of the AVR
family. No, you don't need three different voltages to program and read an AVR flash memory. No, you
don't need another pre-programmed microprocessor to program the AVRs. No, you don't need 10 I/O lines
to tell the chip what you like it to do. And you don't even have to remove the AVR from the socket on your
your experimental board, before programming it. It's even easier than that.

All this is done by a build-in interface in the AVR chips, that enable you to write and read the content of the
program flash and the built-in-EEPROM. This interface works serially and needs only three signal lines:

• SCK: A clock signal that shifts the bits to be written to the memory into an internal shift register, and
that shifts out the bits to be read from another internal shift register,

• MOSI: The data signal that sends the bits to be written to the AVR,

• MISO: The data signal that receives the bits read from the AVR.

These three signal pins are internally connected to the programming machine only if you change the
RESET (sometimes also called RST or restart) pin to zero. Otherwise, during normal operation of the AVR,
these pins are programmable I/O lines like all the others.

If you like to use these pins for other purposes during normal operation, and for in-
system-programming, you'll have to take care, that these two purposes do not
conflict. Usually you then decouple these by resistors or by use of a multiplexer.
What is necessary in your case, depends from your use of the pins in the normal
operation mode. You're lucky, if you can use them for in-system-programming
exclusively.

Not necessary, but recommendable for in-system-programming is, that you supply
the programming hardware out of the supply voltage of your system. That makes it
easy, and requires two additional lines between the programmer and the AVR
board. GND is the common ground or negative pole of the supply voltage, VTG
(target voltage) the supply voltage (usually +5.0 volts). This adds up to 6 lines
between the programmer hardware and the AVR board. The resulting ISP6
connection, as defined by AMEL, is shown on the left.

Standards always have alternative standards, that were used earlier. This is the
technical basis that constitutes the adapter industry. In our case the alternative
standard was designed as ISP10 and was used on the STK200 board, sometimes
also called CANDA interface. It's still a very widespread standard, and even the
more recent STK500 board is equipped with it. ISP10 has an additional signal to
drive a red LED. This LED signals that the programmer is doing his job. A good
idea. Just connect the LED to a resistor and clamp it the positive supply voltage.

Programmer for the PC-Parallel-Port
Now, heat up your soldering iron and build up your programmer. It is a quite easy schematic and works
with standard parts from your well-sorted experiments box.

Yes, that's all you need to program an AVR. The 25-pin plug goes into the parallel port of your PC, the 10-
pin-ISP goes to your AVR experimental board. If your box doesn't have a 74LS245, you can also use a
74HC245 (with no hardware changes) or a 74LS244/74HC244 (by changing some pins and signals). If you
use HC, don't forget to tie unused inputs either to GND or the supply voltage, otherwise the buffers might
produce extra noise by capacitive switching.

Avr-Asm-Tutorial 4 http://www.avr-asm-tutorial.net

The necessary program algorithm is done by the ISP software. Be aware that this parallel port interface is
not supported by ATMEL's studio software any more. So, if you want to program your AVR directly from
within the studio, use different programmers. The Internet provides several solutions.

If you already have a programming board, you will not need to build this programmer, because you'll find
the ISP interface on some pins. Consult your handbook to locate these.

Experimental boards
You probably want to do your first programming steps with a self-made AVR board. Here are two versions
offered:

● A very small one with an ATtiny13, or

● a more complicated one with an AT90S2313 or ATmega2313, including a serial RS232 interface.

Experimental board with an ATtiny13
This is a very small board that allows experiments with the ATtiny13's internal hardware. The picture
shows

● the ISP10 programming interface on the left, with a programming LED attached via a resistor of
390 Ohms,

● the ATtiny13 with a pull-up of 10k on its RESET pin (pin 1),

● the supply part with a bridge rectifier, to be supplied with 9..15V from an AC or DC source, and a
small 5V regulator.

The ATtiny13 requires no external XTAL or clock generator, because it works with its internal 9.6 Mcs/s
RC generator and, by default, with a clock divider of 8 (clock frequency 1.2 Mcs/s).

Avr-Asm-Tutorial 5 http://www.avr-asm-tutorial.net

The hardware can be build on a
small board like the one shown in
the picture. All pins of the tiny13 are
accessible, and external hardware
components, like the LED shown,
can be easily plugged in.

This board allows the use of the
ATtn13's hardware components like
I/O-ports, timers, AD converters,
etc.

Experimental board with an AT90S2313/ATmega2313
For test purposes, were more I/O-pins or a serial communication interface is necessary, we can use a
AT90S2313 or ATmega2313 on an experimental board. The schematic shows

• a small voltage supply for connection to an AC transformer and a voltage regulator 5V/1A,

• a XTAL clock generator (here with a 10 Mcs/s XTAL, all other frequencies below the maximum for
the 2313 will also work),

• the necessary parts for a safe reset during supply voltage switching,

• the ISP-Programming-Interface (here with a ISP10PIN-connector).

So that's what you need to start with. Connect other peripheral add-ons to the numerous free I/O pins of
the 2313.

The easiest output device can be a LED, connected via a resistor to the positive supply voltage. With that,
you can start writing your first assembler program switching the LED on and off.

Avr-Asm-Tutorial 6 http://www.avr-asm-tutorial.net

If you

● do not need the serial communication interface, just skip the hardware connected to pins 2/3 and
14/16,

● if you do not need hardware handshake signals, skip the hardware on the pins 14/16 and connect
RTS on the 9-pin-connector over a 2.2k resistor to +9V.

If you use an ATmega2313 instead of an AT90S2313, the following changes are resulting:

● the external XTAL is not necessary, as the ATmega has an internal RC clock generator, so just
skip all connections to pins 4 and 5,

● if you want to use the external XTAL instead of the build-in RC as clock source, you will have to
program the fuses of the ATmega accordingly.

Ready-to-use commercial programming boards for the
AVR-family
If you do not like homebrewed hardware, and if have some extra money left that you don't know what to do
with, you can buy a commercial programming board. Depending from the amount of extra money you'd like
to spend, you can select between more or less costly versions. For the amateur the following selection
criteria should be looked at:

● price,

● PC interface (preferably USB, less convenient or durable: 9-pin RS232, requiring additional
software: interfaces for the parallel port of the PC),

● support reliability for newer devices (updates are required from time to time, otherwise you sit on a
nearly dead horse),

● hardware features (depends on your foreseeable requirements in the next five years).

The following section describes the three standard boards of ATMEL, the STK200, the STK500 and the
Dragon. The selection is based on my own experiences and is not a recommendation.

STK200
The STK200 from ATMEL is a historic board. If you grab a used one you'll get

● a board with some sockets (for 8, 20, 28 and 40 pin devices),

● eight keys and LEDs, hard connected to port D and B,

● an LCD standard 14-pin interface,

● an option for attaching a 28-pin SRAM,

● a RS232 interface for communication,

● a cable interface for a PC parallel port on one side and a 10-pin-ISP on the other side.

HV programming is not supported.

The board cannot be programmed from within the Studio, the programming software is no longer
maintained, and you must use external programs capable of driving the PC parallel port.

If someone offers you such a board, take it only for free and if you're used to operate software of the
necessary kind.

STK500
Easy to get is the STK500 (e.g. from ATMEL). It has the following hardware:

• Sockets for programming most of the AVR types (e.g. 14-pin devices or TQFP packages require
additional hardware),

• serial and parallel programming in normal mode or with high voltage (HV programming brings
devices back to life even if their RESET pin has been fuse-programmed to be normal port input),

• ISP6PIN- and ISP10PIN-connection for external In-System-Programming,

• programmable oscillator frequency and supply voltages,

• plug-in switches and LEDs,

• a plugged RS232C-connector (UART),

• a serial Flash-EEPROM (only older boards have this),

• access to all port pins via 10-pin connectors.

A major disadvantage of the board is that, before programming a device, several connections have to be

Avr-Asm-Tutorial 7 http://www.avr-asm-tutorial.net

made manually with the delivered cables.

The board is connected to the PC using a serial port (COMx). If your laptop doesn't have a serial interface,
you can use one of the common USB-to-Serial-Interface cables with a software driver. In that case the
driver must be adjusted to use between COM1 and COM8 and a baud rate of 115k to be automatically
detected by the Studio software.

Programming is performed and controlled by recent versions of AVR studio, which is available for free from
ATMEL's web page after registration. Updates of the device list and programming algorithm are provided
with the Studio versions, so the support for newer devices is more likely than with other boards and
programming software.

Experiments can start with the also supplied AVR (older versions: AT90S8515, newer boards versions
include different types). This covers all hardware requirements that the beginner might have.

AVR Dragon
The AVR dragon is a very small board. It has an USB interface, which also supplies the board and the 6-
pin-ISP interface. The 6-pin-ISP-Interface is accompanied by a 20-pin HV programming interface. The
board is prepared for adding some sockets on board, but doesn't have sockets for target devices and other
hardware on board.

The dragon is supported by the Studio software and is a updated automatically.

Its price and design makes it a nice gift for an AVR amateur. The box fits nicely in a row with other
precious and carefully designed boxes.

Avr-Asm-Tutorial 8 http://www.avr-asm-tutorial.net

Tools for AVR assembly programming
Four basic programs are necessary for assembly programming. These tools are:

• the editor,

• the assembler program,

• the chip programing interface, and

• the simulator.

Two different basic routes are possible:

1. anything necessary in one package,

2. each task is performed with a specific program, the results are stored as specific files.

Usually route #1 is chosen. But because this is a tutorial, and you are to understand the underlying
mechanism first, we start with the description of route #2 first.

From a text file to instruction words in the flash memory

The editor
Assembler programs are written with an editor. The editor just has to be able to create and edit ASCII text
files. So, basically, any simple editor does it.

Some features of the editor can have positive effects:

● Errors, that the assembler later detects, are reported along with the line number in the text file. Line
numbers are also a powerful invention of the computer-age when it comes to discussions on your
code with someone else. So your editor should be able to display the line number. Unfortunately
nearly all editors, that a mighty software company provides as part of its operating systems, are
missing that feature. Probably Widows 2019 re-invents that feature, and sells better among
assembler freaks.

● Typing errors are largely reduced, if those errors are marked with colors. It is a nice feature of an
editor to highlight the components of a line in different colors. More or less intelligent recognition of
errors ease typing. But this is a feature that I don't really miss.

● If your editor allows the selection of fonts, chose a font with fixed spacing, like Courier. Headers
look nicer with that.

● Your editor should be capable of recognizing line ends with any combination of characters
(carriage returns, line feeds, both) without producing unacceptable screens. Another item on the
wishlist for Widows 2013.

If you prefer shooting with cannons to kill sparrows, you can use a mighty word processing software to
write assembler programs. It might look nicer, with large bold headings, gray comments, red warnings,
changes marked, and reminders on To-Do's in extra bubble fields. Some disadvantages here: you have to
convert your text to plain text at the end, losing all your nice design work, and your resulting textfile should
not have a single control byte left. Otherwise this single byte will cause an error message, when you
assemble the text. And remember: Line numbers here are only correct on page one of your source code.

So, whatever text program you chose,
it's up to you. The following examples
are written in wavrasm, an editor
provided by ATMEL in earlier days.

In the plain editor field we type in our
directives and assembly instructions. It
is highly recommended that lines come
together with some comments (starting
with ;). Later understanding of what
we've planned here will be helpful in
later debugging.

Now store the program text, named to
something.asm into a dedicated
directory, using the file menu. The
assembly program is complete now.

If you'd like to see what syntax-
highlighting means, I have a snapshot of such an AVR editor here.

The editor recognizes instructions automatically and uses different colors (syntax highlighting) to signal
user constants and typing errors in those instructions (in black). Storing the code in an .asm file provides

Avr-Asm-Tutorial 9 http://www.avr-asm-tutorial.net

nearly the same text file, colors
are not stored in the file.

Don't try to find this editor or its
author; the editor is history and
no longer maintained.

Structuring assembler
code

This page shows the basic
structure of an assembler
program. These structures are
typical for AVR assembler.

This text discusses
• comments ,
• header informations ,
• code at program start and
• the general structure of programs.

Comments
The most helpful things in assembler programs are comments. If you need to understand older code that
you wrote, sometimes years after, you will be happy about having some or more hints what is going on in
that line. If you like to keep your ideas secret, and to hide them against yourself and others: don't use
comments. A comment starts with a semicolon. All that follows behind on the same line will be ignored by
the compiler. If you need to write a comment over multiple lines, start each line with a semicolon. So each
assembler program should start like that:

;
; Click.asm, Program to switch a relais on and off each two seconds
; Written by G.Schmidt, last change: 7.10.2001
;

Put comments around all parts of the program, be it a complete subroutine or a table. Within the comment
mention the special nature of the routine, pre-conditions necessary to call or run the routine. Also mention
the results of the subroutine in case you later will have to find errors or to extend the routine later. Single
line comments are defined by adding a semicolon behind the command on the line. Like this:

 LDI R16,0x0A ; Here something is loaded
 MOV R17,R16 ; and copied somewhere else

Things to be written on top
Purpose and function of the program, the author, version information and other comments on top of the
program should be followed by the processor type that the program is written for, and by relevant
constants and by a list with the register names. The processor type is especially important. Programs do
not run on other chip types without changes. The instructions are not completely understood by all types,
each type has typical amounts of EEPROM and internal SRAM. All these special features are included in a
header file that is named xxxxdef.inc, with xxxx being the chip type, e.g. 2313, tn2323, or m8515. These
files are available by ATMEL. It is good style to include this file at the beginning of each program. This is
done like that:

.NOLIST ; Don't list the following in the list file

.INCLUDE "m8515def.inc" ; Import of the file

.LIST ; Switch list on again

The path, where this file can be found, is only necessary if you don't work with ATMEL's Studio. Of course
you have to include the correct path to fit to your place where these files are located. During assembling,
the output of a list file listing the results is switched on by default. Having listing ob might result in very long
list file (*.lst) if you include the header file. The directive .NOLIST turns off this listing for a while, .LIST
turns it on again. Let's have a short look at the header file. First these files define the processor type:

.DEVICE ATMEGA8515 ; The target device type

The directive .DEVICE advises the assembler to check all instructions if these are available for that AVR
type. It results in an error message, if you use code sequences that are not defined for this type of
processor. You don't need to define this within your program as this is already defined within the header
file. The header file also defines the registers XH, XL, YH, YL, ZH and ZL. These are needed if you use the
16-bit-pointers X, Y or Z to access the higher or lower byte of the pointer separately. All port locations are

http://www.atmel.com/
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#struktur
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#start
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#kopf
../../../avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#comments

Avr-Asm-Tutorial 10 http://www.avr-asm-tutorial.net

also defined in the header file, so PORTB translates to a hex number where this port is located on the
defined device. The port's names are defined with the same names that are used in the data sheets for the
respective processor type. This also applies to single bits in the ports. Read access to port B, Bit 3, can be
done using its bit name PINB3, as defined in the data sheet. In other words: if you forget to include the
header file you will run into a lot of error messages during assembly. The resulting error messages are in
some cases not necessarily related to the missing header file. Others things that should be on top of your
programs are the register definitions you work with ,e. g.:

.DEF mpr = R16 ; Define a new name for register R16

This has the advantage of having a complete list of registers, and to see which registers are still available
and unused. Renaming registers avoids conflicts in the use of these registers and the names are easier to
remember. Further on we define the constants on top of the source file, especially those that have a
relevant role in different parts of the program. Such a constant would, e. g., be the Xtal frequency that the
program is adjusted for, if you use the serial interface on board. With

.EQU fq = 4000000 ; XTal frequency definition

at the beginning of the source code you immediately see for which clock you wrote the program. Very
much easier than searching for this information within 1482 lines of source code.

Things that should be done at program start
After you have done the header, the program code should start. At the beginning of the code the reset- and
interrupt-vectors (their function see in the JUMP section) are placed. As these require relative jumps, we
should place the respective interrupt service routines right behind. In case of ATmega types with larger
flash memory JUMP instructions can be used here, so be careful here. There is some space left then for
other subroutines, before we place the main program. The main program always starts with initialization of
the stack pointer, setting registers to default values, and the init of the hardware components used. The
following code is specific for the program.

Structuring of program code
The described standardized structure is included in a program written for Windows Operating Systems,
which can be downloaded at http://www.avr-asm-download.de/avr_head.zip.

Unzip the executable file, and simply run
it. It shows this: Here you can choose
ATtiny by clicking on it, and then select

ATtiny13 in the dropdown field AVR-
Type.

http://www.avr-asm-download.de/avr_head.zip
../../../avr-asm-tutorial/html/avr_en/beginner/JUMP.html

Avr-Asm-Tutorial 11 http://www.avr-asm-tutorial.net

You are now asked to navigate to its
respective include-file tn13def.inc.
Show the program the way where the
header file is located.
Here you can enter your desired multi
purpose register, the output configu-
ration on ports A and B, if available,
and if you want to use interrupts.

Click Update to fill the window with
your code frame.

Click CopyToClipboard, if you want
to paste this code into your code
editor, or WriteToFile to write this to
an assembler code file instead.

 If you don't know what it is for and what to do, press the Help button.

This produces the following code:

;
; **
; * [Add Project title here] *
; * [Add more info on software version here] *
; * (C)20xx by [Add Copyright Info here] *
; **
;
; Included header file for target AVR type
.NOLIST
.INCLUDE "tn13def.inc" ; Header for ATTINY13
.LIST
;

Avr-Asm-Tutorial 12 http://www.avr-asm-tutorial.net

; ==
; H A R D W A R E I N F O R M A T I O N
; ==
;
; [Add all hardware information here]
;
; ==
; P O R T S A N D P I N S
; ==
;
; [Add names for hardware ports and pins here]
; Format: .EQU Controlportout = PORTA
; .EQU Controlportin = PINA
; .EQU LedOutputPin = PORTA2
;
; ==
; C O N S T A N T S T O C H A N G E
; ==
;
; [Add all constants here that can be subject
; to change by the user]
; Format: .EQU const = $ABCD
;
; ==
; F I X + D E R I V E D C O N S T A N T S
; ==
;
; [Add all constants here that are not subject
; to change or calculated from constants]
; Format: .EQU const = $ABCD
;
; ==
; R E G I S T E R D E F I N I T I O N S
; ==
;
; [Add all register names here, include info on
; all used registers without specific names]
; Format: .DEF rmp = R16
.DEF rmp = R16 ; Multipurpose register
;
; ==
; S R A M D E F I N I T I O N S
; ==
;
.DSEG
.ORG 0X0060
; Format: Label: .BYTE N ; reserve N Bytes from Label:
;
; ==
; R E S E T A N D I N T V E C T O R S
; ==
;
.CSEG
.ORG $0000
 rjmp Main ; Reset vector
 reti ; Int vector 1
 reti ; Int vector 2
 reti ; Int vector 3
 reti ; Int vector 4
 reti ; Int vector 5
 reti ; Int vector 6
 reti ; Int vector 7
 reti ; Int vector 8
 reti ; Int vector 9
;
; ==
; I N T E R R U P T S E R V I C E S
; ==
;
; [Add all interrupt service routines here]
;
; ==
; M A I N P R O G R A M I N I T
; ==

Avr-Asm-Tutorial 13 http://www.avr-asm-tutorial.net

;
Main:
; Init stack
 ldi rmp, LOW(RAMEND) ; Init LSB stack
 out SPL,rmp
; Init Port B
 ldi rmp,(1<<DDB2)|(1<<DDB1)|(1<<DDB0) ; Direction of Port B
 out DDRB,rmp
; [Add all other init routines here]
 ldi rmp,1<<SE ; enable sleep
 out MCUCR,rmp
 sei
;
; ==
; P R O G R A M L O O P
; ==
;
Loop:
 sleep ; go to sleep
 nop ; dummy for wake up
 rjmp loop ; go back to loop
;
; End of source code
;

The assembler
Now we have a text file, with blank ASCII characters. The next step is to translate this code to a machine-
oriented form well understood by the AVR chip. Doing this is called assembling, which means „put together
the right instruction words“. The program that reads the text file and produces some kind of output files is
called Assembler. In the easiest form this is a program for the instruction line that, when called, expects the
address of the text file and some optional switches, and then starts assembling the instructions found in
the text file.

If your editor allows calling external programs, this is an easy task. If not (another item on the wish list for
the editor in Widows 2010), it is more convenient to write a short batch file (again using an editor). That
batch file should have a line like this:

PathToAssembler\Assembler.exe -options PathToTextfile\Textfile.asm

Klicking on the editor's external program
caller or on the batch file starts the
command line assembler. That piece of
software reports the complete translation
process (in the smaller window), here
with no errors. If errors occur these are
notified, along with their type and line
number. Assembling resulted in one word
of code which resulted from the RJMP
instruction that we used. Assembling our
single asm text file now has produced
four other files (not all apply here).

The first of these four new files,
TEST.EEP, holds the content that should
be written to the EEPROM of the AVR.
This is not very interesting in our case,
because we didn't program any content
for the EEPROM. The assembler has
therefore deleted this file when he

completed the assembly run, because it is empty.

The second file, TEST.HEX, is more relevant
because this file holds the instructions later
programmed into the AVR chip. This file looks
like this.

The hex numbers are written in a special
ASCII form, together with address
informations and a checksum for each line.
This form is called Intel-hex-format, and is
very old and stems from the early world of
computing. The form is well understood by

the programing software.

Avr-Asm-Tutorial 14 http://www.avr-asm-tutorial.net

The third file, TEST.OBJ, will be
introduced later, this file is needed to
simulate an AVR. Its format is
hexadecimal and defined by ATMEL.
Using a hex-editor its content looks
like this. Attention: This file format is
not compatible with the programmer

software, don't use this file to program the AVR (a very common error when starting). OBJ files are only
produced by certain ATMEL assemblers, don't expect these files with other assemblers.

The fourth file, TEST.LST, is a text file. Display its
content with a simple editor. The following results.

The program with all its addresses, instructions and
error messages are displayed in a readable form. You
will need that file in some cases to debug errors.

List files are generated only if the appropriate option is
selected on the command line options and if
the .NOLIST directive doesn't suppress listing.

Programming the chips
To program our hex code, as coded in text form in the .HEX-file, to the AVR a programmer software is
necessary. This software reads the .HEX-file and transfers its content, either bit-by-bit (serial
programming) or byte-by-byte (parallel programming) to the AVR's flash memory. We start the programmer
software and load the hex file that we just generated.

In an example that looks
like this. Please note: the
displayed window stems
from ISP.exe, a historic
program no longer distribu-
ted by ATMEL. Other pro-
grammer software looks
similar.

The software will burn our
code in the chip's program
store. There are a number
of preconditions necessary
for this step and several
reasons possible, if this
step fails. Consult your
programmer software help,
if problems occur.

Programming hardware and appropriate software alternatives for different PC operating systems are
available on the Internet. As an example for programming over the PC's parallel or serial communication
port, PonyProg2000 should be mentioned here.

Simulation in the studio
In some cases self-written assembly code, even assembled without errors, does not exactly do what it
should do when burned into the chip. Testing the software on the chip could be complicated, esp. if you
have a minimum hardware and no opportunity to display interim results or debugging signals. In these
cases the Studio software package from ATMEL provides ideal opportunities for debugging. Testing the
software or parts of it is possible, the program code could be tested step-by-step displaying results.

The pictures shown here are taken from Version 4 of the Studio, that is available for free on ATMEL's
website. Older versions looks different, but do nearly the same. The Studio is a software that has all you
need to develop, debug, simulate and burn your assembler programs into the AVR type of your choice.
The studio is started and looks like this.

Avr-Asm-Tutorial 15 http://www.avr-asm-tutorial.net

The first dialog asks whether an existing project should be opened or a new project is to be started. In case
of a newly installed Studio “New Project” is the correct answer. The Button “Next>>” brings you to the
settings dialog of your new project.

Here you select “Atmel AVR Assembler” as your project type, give that project a name (here “test1”) and
let the Studio crate an initial (empty) file for your source code, let it create a folder and select a location for
that project, where you have write access to.

The button “Next>>” opens the platform and device selection dialog:

Avr-Asm-Tutorial 16 http://www.avr-asm-tutorial.net

As debug platform select either “AVR simulator” or “AVR simulator 2”. As Device select your AVR type,
here an ATmega8 was selected. If your desired type is grayed out, select another simulator platform.
Close this window with the “Finish” button. Now a large window pops up, which has lots of different sub-
windows.

On the left, the project window allows you to manipulate and view all your project files. In the middle, the
editor window, allows you to write your source code (try typing its content to your editor window, don't care
about the colors – these are added by the editor – remember syntax-highlighting?). On the left bottom is a
“Build” section, where all your error messages go to. On the right side is a strange I/O view and below a
rather white field, we'll come to that later on.

All window portions can be made larger and smaller and even can be shifted around on the screen. Try
mixing these windows! The next pictures show some differently looking windows, but they are all the same
as here.

After typing the source code shown above to your source file in the editor completely, push the menu
“Build” and its sub-menu “Build”. If you typed correctly, the following shows up in your “Build” window:

Avr-Asm-Tutorial 17 http://www.avr-asm-tutorial.net

Make sure, you read all window content once for the first time, because it gives you a lot more info besides
the small green circle. All that should be fine, otherwise you typed errors into the code and the circle is red.

You can now push the menu item “Debug” and some windows change their content, size and position. If
you also push the menu item “View”, “Toolbars” and “Processor” and shift around windows, it should look
like this:

The former editor window has
a yellow arrow now. This
arrow points to the next
instruction that will be
executed (not really executed,
but rather “simulated”).

The processor window shows
the current program counter
value (yes, the program starts
at address 0), the stack
pointer (no matter what that
might be – wait for that later in
the course), a cycle counter
and a stop watch. If you push
on the small “+” left to the
word “Registers”, the content
of the 32 registers is
displayed (yes, they are all
empty when you start the
processor simulation).

Now let us proceed with the
first instruction. Menu item
“Debug” and “Step into” or
simply F11 executes the first
instruction.

The instruction “ldi rmp,0b11111111”
loads the binary value 1111.1111 to
register R16. An instruction we will learn
more about later on in the course.

The yellow arrow now has advanced
one instruction down, is now at the OUT
instruction.

In the processor window, the program
counter and the cycle counter are both
at 1 now.

And register 16, down the list of
registers, is red now and shows 0xFF,
which is hexadecimal for binary
1111.1111.

To learn about another simulator
window just advance simulation one
step further to execute the OUT
instruction (e. g. by pushing the key F11.

Avr-Asm-Tutorial 18 http://www.avr-asm-tutorial.net

The instruction “Out DDRB,rmp” writes 0xFF to a port named DDRB. Now the action is on the I/O view
window. If you push on PORTB and the small “+” left of it, this window displays the value 0xFF in the port
DDRB in two different forms: as 0xFF in the upper window portion and as 8 black squares in the lower
window section.

To make it even more black, we push F11 two times and write 0x55 to the port PORTB.

As expected, the
port PORTB
changes its
content and has
four black and
four white
squares now.

Another two F11,
writing 0xAA to
PORTB, changes
the black and
white squares to
the opposite
color.

All what has been
expected, but what
happened to port
PINB? We didn't
write something to
PINB, but it has
the opposite colors
than PORTB, just
like the colors
before in PORTB.

PINB is an input
port for external
pins. Because the
direction ports in
DDRB are set to
be outputs, PINB
follows the pin
status of PORTB,
just one cycle

later. Nothing wrong here. If you like to check this, just press F11 several times and you see that this is
correct.

That is our short trip through the simulator software world. The simulator is capable to much more, so it
should be applied extensively in cases of design errors. Visit the different menu items, there is much more
than can be shown here. In the mean time, instead of playing with the simulator, some basic things have to
learned about assembler language, so put the Studio aside for a while.

What is a register?
Registers are special storages with 8 bits capacity and they look like this:

Avr-Asm-Tutorial 19 http://www.avr-asm-tutorial.net

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Note the numeration of these bits: the least significant bit starts with zero (mathematically: 20 = 1).

A register can either store numbers from 0 to 255 (positive number, no negative values), or numbers from -
128 to +127 (whole number with a sign bit, located in bit 7), or a value representing an ASCII-coded
character (e. g. 'A'), or just eight single bits that do not have something to do with each other (e. g. for eight
single flags, used to signal eight different yes/no decisions).

The special character of registers, compared to other storage sites, is that

• they are connected directly to the central processing unit called the accumulator,

• they can be used directly in assembler instructions, either as target register for the result or as read
register for a calculation or transfer,

• operations with their content require only a single instruction word.

There are 32 registers in an AVR. They are originally named R0 to R31, but you can choose to name them
to more meaningful ones using a so-called assembler directive. An example:

.DEF MyPreferredRegister = R16

Assembler directives always start with a dot. Instructions or labels do NEVER start with a dot. Note that
assembler directives like this are only meaningful for the assembler but do not produce any code that is
executable in the AVR target chip. The name “MyPreferredRegister” will not show up in the assembled hex
code, and therefore this name cannot be derived from that hex code.

Instead of using the register name R16 we can now use our own name “MyPreferredRegister”, if we want
to use R16 within an instruction. So we write a little bit more text each time we use this register, but we
have an association what might be the content of this register.

Using the instruction line

LDI MyPreferredRegister, 150

which means: load the number 150 immediately to the register R16, LoaD Immediate. This loads a fixed
value or a constant to that register. Following the assembly, or translation of this code into binary or hex,
the program storage written to the AVR chip looks like this:

000000 E906

This will show up in the listing, a file called *.lst produced by the assembler software, which is a simple text
file. All numbers are in hex format: The first hex number is the address (000000), where the instruction is
written to in the program flash memory of the AVR, the second is the instruction code (E906). E906 tells
the processor three different things in one word, even if you don't see this directly:

● a basic load instruction code, that stands for LDI,

● the target register (R16) where the value 150 is to be written to,

● the value of the constant (150).

Don't be afraid: you don't have to remember this coding because the assembler knows how to translate all
this to finally yield E906 and the AVR executes it.

Within one instruction two different registers can play a role. The easiest instruction of this type is the copy
instruction, MOV. The naming of this instruction MOV deserves a price for the most confusing definition,
because the content of a register cannot be moved (what would be left in a register, if you MOVE its
content to somewhere else?). It should better be named COPY, because it copies the content of one
register to another register. Like this:

.DEF MyPreferredRegister = R16

.DEF AnotherRegister = R15
LDI MyPreferredRegister, 150
MOV AnotherRegister, MyPreferredRegister

The first two lines of this monster program are directives that define the new names of the registers R16
and R15 for the assembler. Again, these lines do not produce any code for the AVR. The instruction lines
with LDI and MOV produce code:

000000 E906
000001 2F01

The instruction write the value 150 into register R16 and copy its content to the target register R15. Very
IMPORTANT NOTICE:

The first register is always the target register where the result is written to!

(This is unfortunately different from what one expects or from how we speak, think and write – left to right.
It is a simple convention, probably inspired by some Asian languages where writing is from right to left.

Avr-Asm-Tutorial 20 http://www.avr-asm-tutorial.net

That was once defined that way to confuse the beginners learning assembler. That is why assembly
language is that complicated.)

Different registers
The beginner might want to write the above instructions like this:

.DEF AnotherRegister = R15
LDI AnotherRegister, 150

And: you lost. Only the registers from R16 to R31 load a constant immediately with the LDI instruction, R0
to R15 don't do that. This restriction is not very fine, but could not be avoided during construction of the
instruction set for the AVRs.

There is one exception from that rule: setting a register to Zero. This instruction

CLR MyPreferredRegister

is valid for all registers.

Besides the LDI instruction you will find this register class restriction with the following additional
instructions:

• ANDI Rx,K ; Bit-And of register Rx with a constant value K,

• CBR Rx,M ; Clear all bits in register Rx that are set to one within the constant mask value M,

• CPI Rx,K ; Compare the content of the register Rx with a constant value K,

• SBCI Rx,K ; Subtract the constant K and the current value of the carry flag from the content of
register Rx and store the result in register Rx,

• SBR Rx,M ; Set all bits in register Rx to one, that are one in the constant mask M,

• SER Rx ; Set all bits in register Rx to one (equal to LDI Rx,255),

• SUBI Rx,K ; Subtract the constant K from the content of register Rx and store the result in register
Rx.

In all these instructions the register must be between R16 and R31! If you plan to use these instructions
you should select one of these registers for that operation. It is shorter and easier to program. This is an
additional reason why you should use the directive to define a register's name, because you can easier
change the registers location later on, if required.

Pointer-registers
A very special extra role is defined for the register pairs R27:R26, R29:R28 and R31:R32. The role is so
important that these pairs have extra short names in AVR assembler: X, Y and Z. These short names are
understood by the assembler. These pairs are 16-bit pointer registers, able to point to addresses with max.
16 bit length, e. g. into SRAM locations (X, Y or Z) or into locations in program memory (Z).

Accessing memory locations with pointers
The lower byte of the 16-bit-address is located in the lower register, the higher byte in the upper register.
Both parts have their own names, e.g. the higher byte of Z is named ZH (=R31), the lower Byte is ZL
(=R30). These names are defined within the assembler. Dividing a 16-bit-word constant into its two
different bytes and writing these bytes to a pointer register is done like follows:

.EQU address = RAMEND ; RAMEND is the highest 16-bit address in SRAM, defined in the *def.inc header file,
LDI YH,HIGH(address) ; Load the MSB of address
LDI YL,LOW(address) ; Load the LSB of address

Accesses via pointer registers are programmed with specially designed instructions. Read access is
named LD (LoaD), write access named ST (STore), e. g. with the X-pointer:

Similarly you can use Y and Z for that purpose.

Pointer Sequence Examples

X Read/Write from address X, don't change the pointer LD R1,X or ST X,R1

X+ Read/Write from/to address X, and increment the pointer afterwards by
one

LD R1,X+ or ST X+,R1

-X First decrement the pointer by one and read/write from/to the new
address afterwards

LD R1,-X or ST -X,R1

Reading program flash memory with the Z pointer
There is only one instruction for the read access to the program storage space. It is defined for the pointer

Avr-Asm-Tutorial 21 http://www.avr-asm-tutorial.net

pair Z and it is named LPM (Load from Program Memory). The instruction copies the byte at program flash
address Z to the register R0. As the program memory is organized word-wise (one instruction on one
address consists of 16 bits or two bytes or one word) the least significant bit selects the lower or upper
byte (0=lower byte, 1= upper byte). Because of this the original address must be multiplied by 2 and
access is limited to 15-bit or 32 kB program memory. Like this:

LDI ZH,HIGH(2*address)
LDI ZL,LOW(2*address)
LPM

Following this instruction the address must be incremented to point to the next byte in program memory.
As this is used very often a special pointer incrementation instruction has been defined to do this:

ADIW ZL,1
LPM

ADIW means ADd Immediate Word and a maximum of 63 can be added this way. Note that the assembler
expects the lower of the pointer register pair ZL as first parameter. This is somewhat confusing as addition
is done as 16-bit- operation.

The complement instruction, subtracting a constant value of between 0 and 63 from a 16-bit pointer
register is named SBIW, Subtract Immediate Word. (SuBtract Immediate Word). ADIW and SBIW are
possible for the pointer register pairs X, Y and Z and for the register pair R25:R24, that does not have an
extra name and does not allow access to SRAM or program memory locations. R25:R24 is ideal for
handling 16-bit values.

In some later types of AVR the automatic incrementation of Z following the LPM instruction has an extra
instruction, LPM Z+. Please consult the instruction list in the data sheet of your AVR type to see if this
applies to the type you are working with.

Tables in the program flash memory
Now that you know how to read from flash memory you might wish to place a list of constants or a string of
text to the flash and read these. How to insert that table of values in the program memory? This is done
with the assembler directives .DB and .DW. With that you can insert byte wise or word wise lists of values.
Byte wise organized lists look like this:

.DB 123,45,67,89 ; a list of four bytes, written in decimal form

.DB "This is a text. " ; a list of byte characters, written as text

You should always place an even number of bytes on each single line. Otherwise the assembler will add a
zero byte at the end, which might be unwanted.

The similar list of words looks like this:

.DW 12345,6789 ; a list of two word constants

Instead of constants you can also place labels (e. g. jump targets) on that list, like that:

Label1:
[... here are some instructions ...]
Label2:
[... here are some more instructions ...]
Table:
.DW Label1,Label2 ; a word wise list of labels

Labels should start in column 1, but have to be ending with a “:”. Note that reading the labels from that
table with LPM (and subsequent incrementation of the pointer) first yields the lower byte of the word, then
the upper byte.

Accessing registers with pointers
A very special application for the pointer registers is the access to the registers themselves. The registers
are located in the first 32 bytes of the chip's address space (at address 0x0000 to 0x001F). This access is
only meaningful if you have to copy the register's content to SRAM or EEPROM or read these values from
there back into the registers. More common for the use of pointers is the access to tables with fixed values
in the program memory space. Here is, as an example, a table with 10 different 16-bit values, where the
fifth table value is read to R25:R24:

MyTable:
.DW 0x1234,0x2345,0x3456,0x4568,0x5678 ; The table values, word wise
.DW 0x6789,0x789A,0x89AB,0x9ABC,0xABCD ; organized
Read5: LDI ZH,HIGH(MyTable*2) ; address of table to pointer Z

LDI ZL,LOW(MyTable*2) ; multiplied by 2 for bytewise access
ADIW ZL,10 ; Point to fifth value in table
LPM ; Read least significant byte from program memory
MOV R24,R0 ; Copy LSB to 16-bit register
ADIW ZL,1 ; Point to MSB in program memory
LPM ; Read MSB of table value
MOV R25,R0 ; Copy MSB to 16-bit register

This is only an example. You can calculate the table address in Z from some input value, leading to the

Avr-Asm-Tutorial 22 http://www.avr-asm-tutorial.net

respective table values. Tables can be organized byte- or character-wise, too.

Recommendation for the use of registers
The following recommendations, if followed, decide if you are an effective assembler programmer:

• Define names for registers with the .DEF directive, never use them with their direct name Rx.

• If you need pointer access reserve R26 to R31 for that purpose.

• A 16-bit-counter is best located in R25:R24.

• If you need to read from the program memory, e. g. fixed tables, reserve Z (R31:R30) and R0 for that
purpose.

• If you plan to have access to single bits within certain registers (e. g. for testing flags), use R16 to
R23 for that purpose.

• Registers necessary for math are best placed to R1 to R15.

• If you have more than enough registers available, place all your variables in registers.

• If you get short in registers, place as many variables as necessary to SRAM.

Avr-Asm-Tutorial 23 http://www.avr-asm-tutorial.net

Ports

What is a Port?
Ports in the AVR are gates from the central processing unit to internal and external hard- and software
components. The CPU communicates with these components, reads from them or writes to them, e. g. to
the timers or the parallel ports. The most used port is the flag register, where flags from previous
operations are written to and branching conditions are read from.

There are 64 different ports, which are not physically available in all different AVR types. Depending on the
storage space and other internal hardware the different ports are either available and accessible or not.
Which of the ports can be used in a certain AVR type is listed in the data sheets for the processor type.
Larger ATmega and ATXmega have more than 64 ports, access to the ports beyond #63 is different then
(see below).

Ports have a fixed address, over which the CPU communicates. The address is independent from the type
of AVR. So e.g. the port address of port B is always 0x18 (0x stands for hexadecimal notation, 0x18 is
decimal 24). You don't have to remember these port addresses, they have convenient aliases. These
names are defined in the include files (header files) for the different AVR types, that are provided from the
producer. The include files have a line defining port B's address as follows:

.EQU PORTB, 0x18

So we just have to remember the name of port B, not its location in the I/O space of the chip. The include
file 8515def.inc is involved by the assembler directive

.INCLUDE "C:\Somewhere\8515def.inc"

and the registers of the 8515 are all defined there and easily accessible.

Ports usually are organized as 8-bit numbers, but can also hold up to 8 single bits that don't have much to
do with each other. If these single bits have a meaning they have their own name associated in the include
file, e. g. to enable the manipulation of a single bit. Due to that name convention you don't have to
remember these bit positions. These names are defined in the data sheets and are given in the include file,
too. They are provided here in the port tables.

Write access to ports
As an example the MCU General Control Register, called MCUCR, consists of a number of single control
bits that control the general property of the chip. Here are the details of port MCUCR in the AT90S8515,
taken from the device data book. Other ports look similar.

It is a port, fully packed with 8 control bits with their own names (ISC00, ISC01, ...). Those who want to
send their AVR to a deep sleep need to know from the data sheet how to set the respective bits. Like this:

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, 0b00100000
OUT MCUCR, MyPreferredRegister
SLEEP

The Out instruction brings the content of my preferred register, a Sleep-Enable-Bit called SE, to the port
MCUCR. SE enables the AVR to go to sleep, whenever the SLEEP instruction shows up in the code. As all
the other bits of MCUCR are also set by the above instructions and the Sleep Mode bit SM was set to zero,
a mode called half-sleep will result: no further instruction execution will be performed but the chip still
reacts to timer and other hardware interrupts. These external events interrupt the big sleep of the CPU if
they feel they should notify the CPU.

The above formulation is not very transparent, because “0b00100000” is not easy to remember, and no
one sees easily what bit exactly has been set to one by this instruction. So it is a good idea to formulate
the LDI instruction as follows:

LDI MyPreferredRegister, 1<<SE

This formulation tells the assembler to

● take a one (“1”),

● to read the bit position of the Sleep Enable bit (“SE”) from the symbol list, as defined in the header
file 8515def.inc, which yields a value of “5” in that case,

● to shift (“<<”) the “1” five times left (“1<<5”), in steps:

Avr-Asm-Tutorial 24 http://www.avr-asm-tutorial.net

1. initial: 0000.0001,

2. first shift left: 0000.0010,

3. second shift left: 0000.0100, and so on until

4. fifth shift left: 0010.0000.

● to associate this value to MyPreferredRegister and to insert this LDI instruction into the code.

To make it clear again: This shifting is done by the assembler software only, not within the code in the
AVR. It is pure convention to increase the readability of the assembler source text.

How does this change, if you want to set the Sleep Mode bit (“SM”) and the Sleep Enable bit (“SE”) within
the same LDI instruction? SM=1 and SE=1 enables your AVR to react to a SLEEP instruction by going to a
big sleep, so only do this if you understand what the consequences are. The formulation is like this:

LDI MyPreferredRegister, (1<<SM) | (1<<SE)

Now, the assembler first calculates the value of the first bracket, (1<<SM), a “1” shifted four times left
(because SM is 4) and that yields 0001.0000, then calculates the second bracket, (1<<SE), a “1” shifted
five times left (because SE is 5). The “|” between the two brackets means BIT-OR the first and the second
value, each bit one by one. The result of doing this with 0001.0000 and 0010.0000 in that case is
0011.0000, and that is our desired value for the LDI instruction. Even though the formulation

(1<<SM) | (1<<SE)

might, on the first look, not be more transparent than the resulting value

0011.0000

for a beginner, it is easier to understand which bits of MCUCR are intended to be manipulated in this LDI
instruction. Especially if you have to read and understand your code some months later, SM and SE are a
better hint that the Sleep Mode and Enable bits are targeted here. Otherwise you would have to consult the
device's data book much more often.

Read access to ports
Reading a port's content is in most cases possible using the IN instruction. The following sequence

.DEF MyPreferredRegister = R16
IN MyPreferredRegister, MCUCR

reads the bits in port MCUCR to the register named MyPreferredRegister. As many ports have undefined
and unused bits in certain ports, these bits always read back as zeros.

More often than reading all 8 bits of a port one must react to a certain status bit within a port. In that case
we don't need to read the whole port and isolate the relevant bit. Certain instructions provide an
opportunity to execute instructions depending on the level of a certain bit of a port (see the JUMP section).

Read-Modify-Write access to ports
Setting or clearing certain bits of a port, without changing the other port bits, is also possible without
reading and writing the other bits in the port. The two instructions are SBI (Set Bit I/O) and CBI (Clear Bit
I/O). Execution is like this:

.EQU ActiveBit=0 ; The bit that is to be changed
SBI PortB, ActiveBit ; The bit “ActiveBit” will be set to one
CBI PortB, Activebit ; The bit “ActiveBit” will be cleared to zero

These two instructions have a limitation: only ports with an address smaller than 0x20 can be handled,
ports above cannot be accessed that way. Because MCUCR in the above examples is at hex address $38,
the sleep mode and enable bits can't be set or cleared that way. But all the port bits controlling external
pins (PORTx, DDRx, PINx) are accessible that way.

Memory mapped port access
For the more exotic programmer and the “elephant-like” ATmega and ATXmega (where ATMEL ran out of
accessible port addresses): the ports can also be accessed using SRAM access instructions, e.g. ST and
LD. Just add 0x20 to the port's address (remember: the first 32 addresses are associated to the registers!)
and access the port that way. Like demonstrated here:

.DEF MyPreferredRegister = R16
LDI ZH,HIGH(PORTB+32)
LDI ZL,LOW(PORTB+32)
LD MyPreferredRegister,Z

That only makes sense in certain cases, because it requires more instructions, execution time and
assembler lines, but it is possible. It is also the reason why the first address location of the SRAM is 0x60
or 0x100 in some larger AVR types.

Avr-Asm-Tutorial 25 http://www.avr-asm-tutorial.net

Details of relevant ports in the AVR
The following table holds the most used ports in a “small” AT90S8515. Not all ports are listed here, some
of the MEGA and AT90S4434/8535 types are skipped. If in doubt see the original reference.

Component Port name Port-Register

Accumulator SREG Status Register

Stack SPL/SPH Stackpointer

External SRAM/External Interrupt MCUCR MCU General Control Register

External Interrupts GIMSK Interrupt Mask Register

GIFR Interrupt Flag Register

Timer Interrupts TIMSK Timer Interrupt Mask Register

TIFR Timer Interrupt Flag Register

8-bit Timer 0 TCCR0 Timer/Counter 0 Control Register

TCNT0 Timer/Counter 0

16-bit Timer 1 TCCR1A Timer/Counter Control Register 1 A

TCCR1B Timer/Counter Control Register 1 B

TCNT1 Timer/Counter 1

OCR1A Output Compare Register 1 A

OCR1B Output Compare Register 1 B

ICR1L/H Input Capture Register

Watchdog Timer WDTCR Watchdog Timer Control Register

EEPROM Access EEAR EEPROM address Register

EEDR EEPROM Data Register

EECR EEPROM Control Register

Serial Peripheral Interface SPI SPCR Serial Peripheral Control Register

SPSR Serial Peripheral Status Register

SPDR Serial Peripheral Data Register

Serial Communication UART UDR UART Data Register

USR UART Status Register

UCR UART Control Register

UBRR UART Baud Rate Register

Analog Comparator ACSR Analog Comparator Control and Status Register

I/O-Ports PORTx Port Output Register

DDRx Port Direction Register

PINx Port Input Register

The status register as the most used port
By far the most often used port is the status register with its 8 bits. Usually access to this port is only by
automatic setting and clearing bits by the CPU or accumulator, some access is by reading or branching on
certain bits in that port, in a few cases it is possible to manipulate these bits directly (using the assembler
instructions SEx or CLx, where x is the bit abbreviation). Most of these bits are set or cleared by the
accumulator through bit-test, compare- or calculation-operations.

The most used bits are:

● Z: If set to one, the previous instruction yielded a zero result.

● C: If set to one, the previous instruction caused a carry of the most significant bit.

The following list has all assembler instructions that set or clear status bits depending on the result of the
previous instruction execution.

Bit Calculation Logic Compare Bits Shift Other

Z ADD, ADC, ADIW, DEC,
INC, SUB, SUBI, SBC,
SBCI, SBIW

AND, ANDI, OR,
ORI, EOR, COM,
NEG, SBR, CBR

CP, CPC,
CPI

BCLR Z,
BSET Z, CLZ,
SEZ, TST

ASR, LSL,
LSR, ROL,
ROR

CLR

Avr-Asm-Tutorial 26 http://www.avr-asm-tutorial.net

Bit Calculation Logic Compare Bits Shift Other

C ADD, ADC, ADIW, SUB,
SUBI, SBC, SBCI, SBIW

COM, NEG CP, CPC,
CPI

BCLR C,
BSET C,
CLC, SEC

ASR, LSL,
LSR, ROL,
ROR

-

N ADD, ADC, ADIW, DEC,
INC, SUB, SUBI, SBC,
SBCI, SBIW

AND, ANDI, OR,
ORI, EOR, COM,
NEG, SBR, CBR

CP, CPC,
CPI

BCLR N,
BSET N,
CLN, SEN,
TST

ASR, LSL,
LSR, ROL,
ROR

CLR

V ADD, ADC, ADIW, DEC,
INC, SUB, SUBI, SBC,
SBCI, SBIW

AND, ANDI, OR,
ORI, EOR, COM,
NEG, SBR, CBR

CP, CPC,
CPI

BCLR V,
BSET V, CLV,
SEV, TST

ASR, LSL,
LSR, ROL,
ROR

CLR

S SBIW - - BCLR S,
BSET S, CLS,
SES

- -

H ADD, ADC, SUB, SUBI,
SBC, SBCI

NEG CP, CPC,
CPI

BCLR H,
BSET H,
CLH, SEH

- -

T - - - BCLR T,
BSET T, BST,
CLT, SET

- -

I - - - BCLR I, BSET
I, CLI, SEI

- RETI

Port details
Port details of the most common ports are shown in an extra table (see annex).

Avr-Asm-Tutorial 27 http://www.avr-asm-tutorial.net

SRAM

Using SRAM in AVR assembler language
Nearly all AVR-types have static RAM (SRAM) on board (only very few old devices don't). Only very simple
assembler programs can avoid using this memory space by putting all necessary information into registers.
If you run out of registers you should be able to program the SRAM to utilize more space.

What is SRAM?
SRAM are memories that are not directly accessible by the central processing unit (Arithmetic and Logical

Unit ALU, sometimes called
accumulator) like the registers
are. If you access these
memory locations you usually
use a register as interim
storage. In the example
displayed here a value in
SRAM will be copied to the
register R2 (1st instruction), a
calculation with the value in R3
is made and the result is
written to R3 (second
instruction). After that this value
is written back to the same
SRAM location (instruction 3,
not shown here).

So it is clear that operations with values stored in the SRAM are slower to perform than those using
registers alone. On the other hand: even the smallest AVR types have 128 bytes of SRAM available, much
more than the 32 registers can hold.

The types from the old AT90S8515 upwards offer the additional opportunity to connect additional external
RAM, expanding the internal 512 bytes. From the assembler point-of-view, external SRAM is accessed like
internal SRAM. No extra instructions must be learned for accessing that external SRAM.

For what purposes can I use SRAM?
Besides simple storage of values, SRAM offers additional opportunities for its use. Not only access with
fixed addresses is possible, but also the use of pointers, so that floating access to subsequent locations in
SRAM can be programmed. This way you can build up ring buffers for interim storage of values or
calculated (variable) tables. This is not very often used with registers, because they are too few and prefer
fixed access.

Even more relative is the access using an offset to a fixed starting address in one of the pointer registers.
In that case a fixed address is stored in a pointer register, a constant value is added to this address and
read/write access is made to that address with an offset. With that kind of access, tables are very more
effective.

But the most relevant use for SRAM is the so-called stack. You can push values (variables) to that stack.
Be it the content of a register, that is temporarily needed for another purpose. Be it a return address prior to
calling a subroutine, or the return address prior to a hardware-triggered interrupt.

How to use SRAM?

Direct addressing
To copy a value to a memory location in SRAM you have to define the address. The SRAM addresses you
can use reach from the start address (very often 0x0060 in smaller AVRs, 0x0100 in larger ATmega) to the
end of the physical SRAM on the chip (in the AT90S8515 the highest accessible internal SRAM location is
0x025F, see the device data sheet of your AVR type for more details on this).

With the instruction

STS 0x0060, R1

the content of register R1 is copied to the first SRAM location in address 0x0060. With

LDS R1, 0x0060

the SRAM content at address 0x0060 is copied to the register. This is the direct access with an address
that has to be defined by the programmer.

The symbols defined in the *def.inc include file, SRAM_START and RAMEND, allow to place your
variables within the SRAM space. So it is better to use these definitions to access the 15 th memory byte,

Avr-Asm-Tutorial 28 http://www.avr-asm-tutorial.net

like this:

LDS R1,SRAM_START+15

Symbolic names can be used to avoid handling fixed addresses, that require a lot of work, if you later want
to change the structure of your data in the SRAM. These names are easier to handle than hex numbers, so
give that address a name like:

.EQU MyPreferredStorageCell = SRAM_START
STS MyPreferredStorageCell, R1

Yes, it isn't shorter, but easier to remember. Use whatever name that you find to be convenient.

Pointer addressing
Another kind of access to SRAM is the use of pointers. You need two registers for that purpose, that hold
the 16-bit address of the location. As we learned in the Pointer-Register-Division, pointer registers are the
register pairs X (XH:XL, R27:R26), Y (YH:YL, R29:R28) and Z (ZH:ZL, R31:R30). They allow access to the
location they point to directly (e. g. with ST X, R1), after prior decrementing the address by one (e. g. ST -
X, R1) or with subsequent auto-incrementation of the address (e. g. ST X+, R1). A complete access to
three cells in a row looks like this:

.EQU MyPreferredStorageCell = SRAM_START

.DEF MyPreferredRegister = R1

.DEF AnotherRegister = R2

.DEF AndYetAnotherRegister = R3
LDI XH, HIGH(MyPreferredStorageCell)
LDI XL, LOW(MyPreferredStorageCell)
LD MyPreferredRegister, X+
LD AnotherRegister, X+
LD AndYetAnotherRegister, X

Easy to operate, those pointers. And as easy as in other languages than assembler, that claim to be easier
to learn.

Pointer with offset
The third construction is a little bit more exotic and only experienced programmers use this in certain
cases. Let's assume we very often in our program need to access three consecutive SRAM locations. Let's
further assume that we have a spare pointer register pair, so we can afford to use it exclusively for our
purpose. If we would use the ST/LD instructions we always have to change the pointer if we access
another location of the three. Not very convenient.

To avoid this, and to confuse the beginner, the access with offset was invented. During that access the
register value isn't changed. The address is calculated by temporarily adding the fixed offset. In the above
example the access to location 0x0062 would look like this. First, the pointer register is set to our central
location SRAM_START:

.EQU MyPreferredStorageCell = SRAM_START

.DEF MyPreferredRegister = R1
LDI YH, HIGH(MyPreferredStorageCell)
LDI YL, LOW(MyPreferredStorageCell)

Somewhere later in the program I'd like to write to cell 2 above SRAM_START:

STD Y+2, MyPreferredRegister

The corresponding instruction for reading from SRAM with an offset

LDD MyPreferredRegister, Y+2

is also possible.

Note that the 2 is not really added to Y, just temporarily during the execution of this instruction. To confuse
you further, this can only be done with the Y- and Z-register-pair, not with the X-pointer!

Of about 100 cases, the use of this opportunity is more effective in one single case. So don't care if you
don't understand this in detail. It is only for experts, and only necessary in a few cases.

That's it with the SRAM, but wait: the most relevant use as stack is still to be learned.

Use of SRAM as stack
The most common use of SRAM is its use as stack. The stack is a tower of wooden blocks. Each
additional block goes onto the top of the tower, each recall of a value removes the most upper block from
the tower. Removal of blocks from the base or from any lower portion of the tower is too complicated and
confuses your whole tower, so never try this. This structure is called Last-In-First-Out (LIFO) or easier: the
last to go on top will be the first coming down from the top.

Avr-Asm-Tutorial 29 http://www.avr-asm-tutorial.net

Defining SRAM as stack
To use SRAM as stack requires the setting of the stack pointer first. The stack pointer is a 16-bit-pointer,
accessible like a port. The double register is named SPH:SPL. SPH holds the most significant address
byte, SPL the least significant. This is only true, if the AVR type has more than 256 byte SRAM. If not, SPH
is not necessary, is undefined, and must not and cannot be used. We assume we have more than 256
bytes SRAM in the following examples.

To construct the stack, the stack pointer is loaded with the highest available SRAM address. (In our case
the tower grows downwards, towards lower addresses, just for historic reasons and to confuse the
beginner!).

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, HIGH(RAMEND) ; Upper byte
OUT SPH,MyPreferredRegister ; to stack pointer
LDI MyPreferredRegister, LOW(RAMEND) ; Lower byte
OUT SPL,MyPreferredRegister ; to stack pointer

The value RAMEND is, of course, specific for the processor type. It is defined in the INCLUDE file for the
processor type. The file 8515def.inc has the line:

.equ RAMEND =$25F ; Last On-Chip SRAM Location

The file 8515def.inc is included with the assembler directive

.INCLUDE "C:\somewhere\8515def.inc"

at the beginning of our assembler source code.

So we defined the stack now, and we don't have to care about the stack pointer any more, because
manipulations of that pointer are mostly automatic.

Use of the stack
Using the stack is easy. The content of registers are pushed onto the stack like this:

PUSH MyPreferredRegister ; Throw that value on top of the stack

Where that value goes to is totally uninteresting. That the stack pointer was decremented after that push,
we don't have to care. If we need the content again, we just add the following instruction:

POP MyPreferredRegister ; Read back the value from the top of the stack

With POP we just get the value that was last pushed on top of the stack. Pushing and popping registers
makes sense, if

• the content is again needed some lines of the code later,

• all registers are in use, and if

• no other opportunity exists to store that value somewhere else.

If these conditions are not given, the use of the stack for saving registers is useless and just wastes
processor time.

More sense makes the use of the stack in subroutines, where you have to return to the program location
that called the routine. In that case the calling program code pushes the return address (the current
program counter value) onto the stack and temporarily jumps to the subroutine. After its execution the
subroutine pops the return address from the stack and loads it back into the program counter. Program
execution is continued exactly one instruction behind the instruction, where the call happened:

RCALL Somewhat ; Jump to the label “somewhat:”
 [...] here we will later continue with the program.

Here the jump to the label “somewhat:” somewhere in the program code,

Somewhat: ; this is the jump address
[...] Here we do something
[...] and we are finished and want to jump back to the calling location:

RET

During execution of the RCALL instruction the already incremented program counter, a 16-bit-address, is
pushed onto the stack, using two pushes (the LSB and the MSB). By reaching the RET instruction, the
content of the previous program counter is reloaded with two pops and execution continues there.

You don't need to care about the address of the stack, where the counter is loaded to. This address is
automatically generated. Even if you call a subroutine within that subroutine the stack function is fine. This
just packs two return addresses on top of the stack, the nested subroutine removes the first one, the
calling subroutine the remaining one. As long as there is enough SRAM, everything is fine.

Servicing hardware interrupts isn't possible without the stack. Interrupts stop the normal execution of the
program, wherever the program currently is. After execution of a specific service routine as a reaction to
that interrupt program execution must return to the previous location, to before the interrupt occurred. This
would not be possible if the stack is not able to store the return address.

Avr-Asm-Tutorial 30 http://www.avr-asm-tutorial.net

The enormous advances of having a stack for interrupts are the reason, why even the smallest AVRs
without having SRAM have at least a very small hardware stack.

Bugs with the stack operation
For the beginner there are a lot of possible bugs, if you first learn to use stack.

Very clever is the use of the stack without first setting the stack pointer. Because this pointer is set to zero
at program start, the pointer points to the location 0x0000, where register R0 is located. Pushing a byte
results in a write to that register, overwriting its previous content. An additional push to the stack writes to
0xFFFF, an undefined position (if you don't have external SRAM there). A RCALL and RET will return to a
strange address in program memory. Be sure: there is no warning, like a window popping up saying
something like „Illegal access to memory location xxxx“.

Another opportunity to construct bugs is to forget to pop a previously pushed value, or popping a value
without pushing one first.

In a very few cases the stack overflows to below the first SRAM location. This happens in case of a never-
ending recursive call. After reaching the lowest SRAM location the next pushes write to the ports (0x005F
down to 0x0020), then to the registers (0x001F to 0x0000). Funny and unpredictable things happen with
the chip hardware, if this goes on. Avoid this bug, it can even destroy your external hardware!

Avr-Asm-Tutorial 31 http://www.avr-asm-tutorial.net

Jumping and Branching
Here we discuss all instructions that control the sequential execution of a program. It starts with the starting
sequence on power-up of the processor, continues with jumps, interrupts, etc.

Controlling sequential execution of the program

What happens during a reset?
When the power supply voltage of an AVR rises and the processor starts its work, the hardware triggers a
reset sequence. The ports are set to their initial values, as defined in the device data sheet. The counter
for the program steps will be set to zero. At this address the execution always starts. Here we have to have
our first word of code. But not only during power-up this address is activated:

• During an external reset on the reset pin of the device a restart is executed.

• If the Watchdog counter reaches its maximum count, a reset is initiated. A watchdog timer is an
internal clock that must be reseted from time to time by the program, otherwise it restarts the
processor.

• You can call reset by a direct jump to that address (see the jump section below).

The third case is not a real reset, because the automatic resetting of register- and port-values to a well-
defined default value is not executed. So, forget that for now.

The second option, the watchdog reset, must first be enabled by the program. It is disabled by default.
Enabling requires write instructions to the watchdog's port. Setting the watchdog counter back to zero
requires the execution of the instruction

WDR

to avoid a reset.

After execution of a reset, with setting registers and ports to default values, the code at address 0000 is
word wise read to the execution part of the processor and is executed. During that execution the program
counter is already incremented by one and the next word of code is already read to the code fetch buffer
(Fetch during Execution). If the executed instruction does not require a jump to another location in the
program the next instruction is executed immediately. That is why the AVRs execute extremely fast, each
clock cycle executes one instruction (if no jumps occur).

The first instruction of an executable is always located at address 0000. To tell the compiler (assembler
program) that our source code starts now and here, a special directive can be placed at the beginning,
before the first code in the source is written:

.CSEG

.ORG 0000

The first directive, .CSEG, lets the compiler switch his output to the code section. All following is translated
as code and is later written to the program flash memory section of the processor. Another target segment
would be the EEPROM section of the chip, where you also can write bytes or words to.

.ESEG

The third segment is the SRAM section of the chip.

.DSEG

Other than with EEPROM content, where content is really going to the EEPROM during programming of
the chip, the DSEG segment content is not programmed to the chip. There is no opportunity to burn any
SRAM content. So the .DSEG is only used for correct label calculation during the assembly process. An
example:

.DSEG ; The following are label definitions within the SRAM segment
MyFirstVariableIsAByte:
.BYTE 1 ; the DSEG-Pointer moves one byte upwards
MySecondVariableIsAWord:
.BYTE 2 ; the DSEG-Pointer moves two bytes upwards
MyThirdVariableIsAFieldForABuffer:
.BYTE 32; the DSEG-Pointer moves 32 bytes upwards

So, only three labels are defined within the assembler, no content is produced.

The ORG directive within the code segment, .ORG, above stands for the word “origin” and manipulates the
address within the code segment, where assembled words go to. As our program always starts at 0x0000
the CSEG/ORG directives are trivial, you can skip these without getting into an error. We could start at
0x0100, but that makes no real sense as the processor starts execution at 0000. If you want to place a
table exactly to a certain location of the code segment, you can use ORG. But be careful with that: Only
jump forward with .ORG, never backwards. And be aware that the flash memory space that you skipped in
between your current code location and the one you forced with .ORG is always filled with the instruction
word 0xFFFF. This instruction does nothing, just goes to the next instruction. So be sure your execution

Avr-Asm-Tutorial 32 http://www.avr-asm-tutorial.net

never jumps into such undefined space in between.

If on the beginning of your code section you want to set a clear sign within your code, after first defining a
lot of other things with .DEF- and .EQU-directives, use the CSEG/ORG sequence as a signal for yourself,
even though it might not be necessary to do that.

As the first code word is always at address zero, this location is also called the reset vector. Following the
reset vector the next positions in the program space, addresses 0x0001, 0x0002 etc., are interrupt vectors.
These are the positions where the execution jumps to if an external or internal interrupt has been enabled
and occurs. These positions called vectors are specific for each processor type and depend on the internal
hardware available (see below). The instructions to react to such an interrupt have to be placed to the
proper vector location. If you use interrupts, the first code, at the reset vector, must be a jump instruction,
to jump over the other vectors. Each interrupt vector, that is planned to be enabled, must hold a jump
instruction to the respective interrupt service routine. If the vector is not used, a dummy instruction like
RETI (RETurn from Interrupt) is best placed here. The typical program sequence at the beginning is like
follows:

.CSEG

.ORG 0000
RJMP Start ; the reset vector
RJMP IntServRout1 ; the interrupt service routine for the first interrupt
RETI ; a dummy for an unused interrupt
RJMP IntServRout3 ; the interrupt service routine for the third interrupt

[...] here we place all the other interrupt vector instructions

[...] and here is a good place for the interrupt service routines themselves
IntServRout1:
 [...] Code of the first int service routine

RETI ; end of service routine 1
IntServRout2:
 [...] Code of the third int service routine

RETI ; end of service routine 2
[...] other code
Start: ; This here is the program start
[...] Here we place our main program

The instruction “RJMP Start” results in a jump to the label Start:, located some lines below. Remember,
labels always end with a “:”. Labels, that don't fulfill these conditions are not taken for serious, but
interpreted as instructions. Missing labels result in an error message ("Undefined label"), and compilation
is interrupted.

Linear program execution and branches
Program execution is always linear, if nothing changes the sequential execution. These changes are the
execution of an interrupt or of branching instructions.

Branching
Branching is very often depending on some condition, called conditional branching. As an example we
assume we want to construct a 32-bit-counter using the registers R1 to R4. The least significant byte in R1
is incremented by one. If the register overflows during that operation (255 + 1 = 0), we have to increment
R2 similarly. If R2 overflows, we have to increment R3, and so on.

Incrementation by one is done with the instruction INC. If an overflow occurs during that execution of
INC R1, the zero bit in the status register is set to one (the result of the operation is zero). The carry bit in
the status register, as usually set when something overflows, is not changed during an INC. This is not to
confuse the beginner, but carry can be used for other purposes instead. The Zero-Bit or Zero-flag in this
case is enough to detect an overflow. If no overflow occurs we can just leave the counting sequence.

If the Zero-bit is set, we must execute additional incrementation of the next upper register. To confuse the
beginner the branching instruction, that we have to use, is not named BRNZ but BRNE (BRanch if Not
Equal). A matter of taste ...

The whole count sequence of the 32-bit-counter should then look like this:

INC R1 ; increase content of register R1
BRNE GoOn32 ; if not zero, branch to GoOn32:
INC R2 ; increase content of register R2
BRNE GoOn32
INC R3
BRNE GoOn32
INC R4

 GoOn32:

So that's about it. An easy thing. The opposite condition to BRNE is BREQ or BRanch EQual.

Which of the status bits, also called processor flags, are changed during execution of an instruction is
listed in instruction code tables, see the List of Instructions. Similarly to the Zero-bit you can use the other
status bits like that:

BRCC label/BRCS label; Carry-flag 0 (BRCC) or 1 (BRCS)

Avr-Asm-Tutorial 33 http://www.avr-asm-tutorial.net

BRSH label; Equal or greater
BRLO label; Smaller
BRMI label; Minus
BRPL label; Plus
BRGE label; Greater or equal (with sign bit)
BRLT label; Smaller (with sign bit)
BRHC label/BRHS label; Half overflow flag 0 or 1
BRTC label/BRTS label; T-Bit 0 or 1
BRVC label/BRVS label; Two's complement flag 0 or 1
BRIE label/BRID label; Interrupt enabled or disabled

to react to the different conditions. Branching always occurs if the condition is met. Don't be afraid, most of
these instructions are rarely used. For the beginner only Zero and Carry are relevant.

Timing during program execution
Like mentioned above the required time to execute one instruction is equal to the processor's clock cycle.
If the processor runs on a 4 MHz clock frequency then one instruction requires 1/4 µs or 250 ns, at 10 MHz
clock only 100 ns. The required time is as exact as the internal or external or xtal clock is. If you need
exact timing an AVR is the optimal solution for your problem. Note that there are a few instructions that
require two or more cycles, e. g. the branching instructions (if branching occurs) or the SRAM read/write
sequence. See the instruction table for details.

To define exact timing there must be an opportunity that does nothing else than delay program execution.
You might use other instructions that do nothing, but more clever is the use of the no-operation instruction
NOP. This is the most useless instruction:

NOP

This instruction does nothing but wasting processor time. At 4 MHz clock we need just four of these
instructions to waste 1 µs. No other hidden meanings here on the NOP instruction. For a signal generator
with 1 kHz we don't need to add 4000 such instructions to our source code, but we use a software counter
and some branching instructions. With these we construct a loop that executes for a certain number of
times and are exactly delayed. A counter could be a 8-bit-register that is decremented with the DEC
instruction, e. g. like this:

CLR R1 ; one clock cycle
Count:

DEC R1 ; one clock cycle
BRNE Count ; two for branching, one for not branching

This sequence wastes (1) + (255*2) + (1*3) = 514 clock cycles or 128.5 µs at 4 MHz.

16-bit counting can also be used to delay exactly, like this

LDI ZH,HIGH(65535) ; one clock cycle
LDI ZL,LOW(65535) ; one clock cycle

Count:
SBIW ZL,1 ; two clock cycles
BRNE Count ; two for branching, one for not branching

This sequence wastes (1+1) + (65534*4) + (1*3) = 262,141 clock cycles or 65,535.25 µs at 4 MHz.

If you use more registers to construct nested counters you can reach any delay. And the delay is as exact
as your clock source is, even without a hardware timer.

Macros and program execution
Very often you have to write identical or similar code sequences on different occasions in your source
code. If you don't want to write it once and jump to it via a subroutine call you can use a macro to avoid
getting tired writing the same sequence several times. Macros are code sequences, designed and tested
once, and inserted into the code by its macro name. As an example we assume we need to delay program
execution several times by 1 µs at 4 MHz clock. Then we define a macro somewhere in the source:

.MACRO Delay1
NOP
NOP
NOP
NOP

.ENDMACRO

This definition of the macro does not yet produce any code, it is silent. Code is produced only if you call
that macro by its name:

[...] somewhere in the source code
Delay1

[...] code goes on here

This results in four NOP instructions inserted to the code at that location. An additional “Delay1” inserts
additional four NOP instructions.

If your macro has longer code sequences, or if you are short in code storage space, you should avoid the

Avr-Asm-Tutorial 34 http://www.avr-asm-tutorial.net

use of macros and use subroutines instead.

By calling a macro by its name you can add some parameters to manipulate the produced code. But this is
more than a beginner has to know about macros.

Subroutines
In contrary to macros a subroutine does save program storage space. The respective sequence is only
once stored in the code and is called from whatever part of the code. To ensure continued execution of the
sequence following the subroutine call you need to return to the caller. For a delay of 10 cycles you need
to write this subroutine:

Delay10: ; the call of the subroutine requires some cycles
NOP ; delay one cycle
NOP ; delay one cycle
NOP ; delay one cycle
RET ; return to the caller

Subroutines always start with a label, otherwise you would not be able to jump to it, here named
“Delay10:”. Three NOPs follow and a RET instruction. If you count the necessary cycles you just find 7
cycles (3 for the NOPs, 4 for the RET). The missing 3 are for calling that routine:

[...] somewhere in the source code:
RCALL Delay10

[...] further on with the source code
RCALL is a relative call. The call is coded as relative jump, the relative distance from the calling routine to
the subroutine is calculated by the compiler. The RET instruction jumps back to the calling routine. Note
that before you use subroutine calls you must set the stack pointer (see Stack), because the return
address must be packed on top of the stack during the RCALL instruction.

If you want to jump directly to somewhere else in the code you have to use the jump instruction:

[...] somewhere in the source code
RJMP Delay10

Return:
[...] further on with source code

Note that RJMP is also a relative jump instruction with limited distance. Only ATmega AVRs have a JMP
instruction allowing jumps over the complete flash memory space, but these instructions require two words
and more instruction time than RJMP, so avoid it if possible.

The routine that you jumped to can not use the RET instruction in that case, because RJMP does not place
the current execution address to the stack. To return back to the calling location in the source requires to
add another label and the called routine to jump back to this label. Jumping like this is not like calling a
subroutine because you can't call this routine from different locations in the code.

RCALL and RJMP are unconditioned branches. To jump to another location, depending on some
condition, you have to combine these with branching instructions. Conditioned calling of a subroutine can
best be done with the following (confusing) instructions. If you want to call a subroutine depending on a
certain bit in a register use the following sequence:

SBRC R1,7 ; Skip the next instruction if bit 7 in register 1 is 0
RCALL UpLabel ; Call that subroutine

SBRC reads „Skip next instruction if Bit 7 in Register R1 is Clear (=Zero)“. The RCALL instruction to
“UpLabel:” is only executed if bit 7 in register R1 is 1, because the next instruction is skipped if it would be
0. If you like to call the subroutine in case this bit is 0 then you use the corresponding instruction SBRS.
The instruction following SBRS/SBRC can be a single word or double word instruction, the processor
knows how far he has to jump over it. Note that execution times are different then. To jump over more than
one following instruction these instructions cannot be used.

If you have to skip an instruction in case two registers have the same value you can use the following
exotic instruction:

CPSE R1,R2 ; Compare R1 and R2, skip next instruction if equal
RCALL SomeSubroutine ; Call SomeSubroutine

A rarely used instruction, forget it for the beginning. If you like to skip the following instruction depending
on a certain bit in a port use the following instructions SBIC and SBIS. That reads “Skip if the Bit in I/o
space is Clear (or Set)”, like this:

SBIC PINB,0 ; Skip next instruction if Bit 0 on input port B is 0
RJMP ATarget ; Jump to the label ATarget

The RJMP-instruction is only executed if bit 0 in port B is high. This is something confusing for the
beginner. The access to the port bits is limited to the lower half of ports, the upper 32 ports are not usable
here.

Now, another exotic application for the expert. Skip this if you are a beginner. Assume we have a bit switch
with 4 switches connected to port B. Depending on the state of these 4 bits we would like to jump to 16
different locations in the code. Now we can read the port and use several branching instructions to find out,
where we have to jump to today. As alternative you can write a table holding the 16 addresses, like this:

Avr-Asm-Tutorial 35 http://www.avr-asm-tutorial.net

MyTab:
RJMP Routine1
RJMP Routine2
[...]
RJMP Routine16

In our code we copy that address of the table to the Z pointer register:

LDI ZH,HIGH(MyTab)
LDI ZL,LOW(MyTab)

and add the current state of the port B (in R16) to this address.

ADD ZL,R16
BRCC NoOverflow
INC ZH

 NoOverflow:

Now we can jump to this location in the table, either for calling a subroutine:

ICALL ; call the subroutine which address is in Z

or as a jump with no way back:

IJMP ; jump to address in Z

The processor loads the content of the Z register pair into its program counter and continues operation
there. More clever than branching over and over?

Interrupts and program execution
Very often we have to react on hardware conditions or other events. An example is a change on an input
pin. You can program such a reaction by writing a loop, asking whether a change on the pin has occurred.
This method is called polling, its like a bee running around in circles searching for new flowers. If there are
no other things to do and reaction time does not matter, you can do this with the processor. If you have to
detect short pulses of less than a µs duration this method is useless. In that case you need to program an
interrupt.

An interrupt is triggered by some hardware conditions. All hardware interrupts are disabled at reset time by
default, so the condition has to be enabled first. The respective port bits enabling the component's interrupt
ability are set first. The processor has a bit in its status register enabling him to respond to the interrupt of
all components, the Interrupt Enable Flag. Enabling the general response to interrupts requires the
following instruction:

SEI ; Set Int Enable Bit

Each single interrupt requires additional port manipulation to be enabled.

If the interrupting condition occurs, e. g. a change on the port bit, the processor pushes the actual program
counter to the stack (which must be enabled first! See initiation of the stackpointer in the Stack section of
the SRAM description). Without that, the processor wouldn't be able to return back to the location, where
the interrupt occurred (which could be any time and anywhere within program execution). After that,
processing jumps to the predefined location, the interrupt vector, and executes the instructions there.
Usually the instruction there is a JUMP instruction to the interrupt service routine, located somewhere in
the code. The interrupt vector is a processor-specific location and depending from the hardware
component and the condition that leads to the interrupt. The more hardware components and the more
conditions, the more vectors. The different vectors for some older AVR types are listed in the following
table. (The first vector isn't an interrupt but the reset vector, performing no stack operation!)

Name Interrupt Vector Address Triggered by

2313 2323 8515

RESET 0000 0000 0000 Hardware Reset, Power-On-Reset, Watchdog Reset

INT0 0001 0001 0001 Level change on the external INT0 pin

INT1 0002 - 0002 Level change on the external INT1 pin

TIMER1CAPT 0003 - 0003 Capture event on Timer/Counter 1

TIMER1COMPA - - 0004 Timer/Counter 1 = Compare value A

TIMER1 COMPB - - 0005 Timer/Counter 1 = Compare value B

TIMER1 COMP1 0004 - - Timer/Counter 1 = Compare value 1

TIMER1 OVF 0005 - 0006 Timer/Counter 1 Overflow

TIMER0 OVF 0006 0002 0007 Timer/Counter 0 Overflow

SPI STC - - 0008 Serial Transmit Complete

UART TX 0007 - 0009 UART char in receive buffer available

Avr-Asm-Tutorial 36 http://www.avr-asm-tutorial.net

Name Interrupt Vector Address Triggered by

UART UDRE 0008 - 000A UART transmitter ran empty

UART TX 0009 - 000B UART All Sent

ANA_COMP - - 000C Analog Comparator

Note that the capability to react to events is very different for the different types. The addresses are
sequential, but not identical for different types. Consult the data sheet for each AVR type.

The higher a vector in the list the higher is its priority. If two or more components have an interrupt
condition pending at the same time, the up most vector with the lower vector address wins. The lower int
has to wait until the upper int was served. To disable lower ints from interrupting during the execution of its
service routine the first executed int disables the processor's I-flag. The service routine must re-enable this
flag after it is done with its job.

For re-setting the I status bit there are two ways. The service routine can end with the instruction:

RETI

This return from the int routine restores the I-bit after the return address has been loaded to the program
counter.

The second way is to enable the I-bit by the instruction

SEI ; Set Interrupt Enabled
RET ; Return

This is not the same as the RETI, because subsequent interrupts are already enabled before the program
counter is re-loaded with the return address. If another int is pending, its execution is already starting
before the return address is popped from the stack. Two or more nested addresses remain on the stack.
No bug is to be expected, but it is an unnecessary risk doing that. So just use the RETI instruction to avoid
this unnecessary flow to the stack.

An Int-vector can only hold a relative jump instruction to the service routine. If a certain interrupt is not used
or undefined we can just put a RETI instruction there, in case an erroneously enabled int happens before
we wrote an interrupt service routine. In a few cases it is absolutely necessary to react to these false ints.
That is the case if the execution of the respective service routine does not automatically reset the interrupt
condition flag of the peripheral. In that case a simple RETI would reset the otherwise never-ending
interrupts. This is the case with some of the UART interrupts.

As, after an interrupt is under service, further execution of lower-priority interrupts are blocked, all int
service routines should be as short as possible. If you need to have a longer routine to serve the int, use
one of the two following methods. The first is to allow ints by SEI within the service routine, whenever
you're done with the most urgent tasks. This is not very clever. More convenient is to perform the urgent
tasks, setting a flag somewhere in a register for the slower reaction portions and return from the int
immediately.

A very serious rule for int service routines is:

The first instruction is always to save the processor status flags in a register or on
the stack.

Do this before you use instructions that might change flags in the status flag register. The reason is that
the interrupted main program might just be in a state using the flag for a branch decision, and the int would
just change that flag to another state. Funny things would happen from time to time. The last instruction
before the RETI therefore is to copy the saved flags from the register back to status port or to pop the
status register content from the stack and restore its original content. The following shows examples how
to do that:

Saving in a register: Saving on the stack:

Isr: Isr:
IN R15,SREG ; save flags PUSH R15 ; save register on stack
[... more instructions...] IN R15, SREG

[...more instructions...]
OUT SREG,R15 ; restore flags OUT SREG,R15 ; restore flags

POP R15
RETI ; return from interrupt RETI ; return from interrupt

The method on the right is slower, the method on the left requires a register exclusively for that purpose.

Generally: All used registers in a service routine should either be exclusively reserved for that purpose or
saved on stack and restored at the end of the service routine. Never change the content of a register within
an int service routine that is used somewhere else in the normal program without restoring it.

Because of these basic requirements a more sophisticated example for an interrupt service routine here.

.CSEG ; Code-Segment starts here

.ORG 0000 ; Address is zero
RJMP Start ; The reset-vector on Address 0000
RJMP IService ; 0001: first Int-Vector, INT0 service routine

Avr-Asm-Tutorial 37 http://www.avr-asm-tutorial.net

[...] here other vectors

Start: ; Here the main program starts
[...] here is enough space for defining the stack and other things

IService: ; Here we start with the Interrupt-Service-Routine

PUSH R16 ; save a register to stack
IN R16,SREG ; read status register
PUSH R16 ; and put on stack

[...] Here the Int-Service-Routine does something and uses R16
POP R16 ; get previous flag register from stack
OUT SREG,R16 ; restore old status
POP R16 ; get previous content of R16 from the stack
RETI ; and return from int

Looks a little bit complicated, but is a prerequisite for using ints without producing serious bugs. Skip
PUSH R16 and POP R16 if you can afford reserving the register for exclusive use within the service
routine. As an interrupt service routine cannot be interrupted (unless you allow interrupts within the
routine), all different int service routines can use the same register.

You understand now, why allowing interrupts within an interrupt service routine, and not at its end with
RETI, is not a good idea?

That's it for the beginner. There are some other things with ints, but this is enough to start with, and not to
confuse you.

Avr-Asm-Tutorial 38 http://www.avr-asm-tutorial.net

Calculations
Here we discuss all necessary instructions for calculating in AVR assembler language. This includes
number systems, setting and clearing bits, shift and rotate, and adding/subtracting/comparing and the
format conversion of numbers.

Number systems in assembler
The following formats of numbers are common in assembler:

• Positive whole numbers (Bytes, Words, Longwords, etc.),

• Signed whole numbers (ShortInts, Integers, LongInts, etc.),

• Binary Coded Digits (BCD),

• Packed BCDs,

• ASCII-formatted numbers.

If you come from a high-level language: forget pre-defined number formats. Assembler doesn't have that
concept nor its (sometimes frustating) limitations. What you earn is: you are the master of your own format!

Positive whole numbers (bytes, words, etc.)
The smallest whole number to be handled in assembler is a byte with eight bits. This codes numbers
between 0 and 255. Such bytes fit exactly into one register of the MCU. All larger numbers must be based
on this basic format, using more than one register. Two bytes yield a word (range from 0 .. 65,535), three
bytes form a longer word (range from 0 .. 16,777,215) and four bytes form a double word (range from 0 ..
4,294,967,295).

The single bytes of a word or a double word can be stored in whatever register you prefer. Operations with
these single bytes are programmed byte by byte, so you don't have to put them in a row. In order to form a
row for a double word we could store it like this:

.DEF r16 = dw0

.DEF r17 = dw1

.DEF r18 = dw2

.DEF r19 = dw3

Registers dw0 to dw3 are in a row, but don't need to be. If we need to initiate this double word at the
beginning of an application (e. g. to 4,000,000), this should look like this:

.EQU dwi = 4000000 ; define the constant
LDI dw0,LOW(dwi) ; The lowest 8 bits to R16
LDI dw1,BYTE2(dwi) ; bits 8 .. 15 to R17
LDI dw2,BYTE3(dwi) ; bits 16 .. 23 to R18
LDI dw3,BYTE4(dwi) ; bits 24 .. 31 to R19

So we have splitted this decimal number, called dwi, to its binary portions BYTE4 to BYTE1 and packed
them into the four byte packages. Now you can calculate with this double word.

Signed numbers (integers)
Sometimes, but in rare cases, you need negative numbers to calculate with. A negative number is defined
by interpreting the most significant bit of a byte as sign bit. If it is 0 the number is positive. If it is 1 the
number is negative. If the number is negative we usually do not store the rest of the number as is, but we
use its inverted value. Inverted means that -1 as a byte integer is not written as 1000.0001 but as
1111.1111 instead. That means: subtract 1 from 0 (and forget the overflow). The first bit is the sign bit,
signaling that this is a negative number. Why this different format (subtracting the number from 0) is used
is easy to understand: adding -1 (1111.1111) and +1 (0000.0001) yields exactly zero, if you forget the
overflow that occurs during that operation (to the ninth bit).

In one byte the largest integer number to be handled is +127 (binary 01111111), the smallest one is -128
(binary 1,0000000). In other computer languages this number format is called short integer. If you need a
bigger range of values you can add another byte to form a larger integer value, ranging from +32,767 .. -
32,768), four bytes provide a range from +2,147,483,647 .. -2,147,483,648, in other languages called a
LongInt or DoubleInt.

Binary Coded Digits, BCD
Positive or signed whole numbers in the formats discussed above use the available space most effectively.
Another, less dense number format, but easier to handle and understand is to store decimal numbers in a
byte for one digit each. The decimal digit is stored in its binary form in a byte. Each digit from 0 .. 9 needs
four bits (binary values 0000 .. 1001), the upper four bits of the byte are always zeros, blowing a lot of hot
air into one byte. For to handle the value 250 we would need at least three bytes, e. g.:

Avr-Asm-Tutorial 39 http://www.avr-asm-tutorial.net

Bit value 128 64 32 16 8 4 2 1

R16, Digit 1 =2 0 0 0 0 0 0 1 0

R17, Digit 2 = 5 0 0 0 0 0 1 0 1

R18, Digit 3 = 0 0 0 0 0 0 0 0 0

;Instructions to use:
LDI R16,2
LDI R17,5
LDI R18,0

You can calculate with these numbers, but this is a bit more complicated in assembler than calculating with
binary values. The advantage of this format is that you can handle as long numbers as you like, as long as
you have enough storage space. The calculations are as precise as you like (if you program AVRs for
banking applications), and you can convert them very easily to character strings.

Packed BCDs
If you pack two decimal digits into one byte you don't loose that much storage space. This method is called
packed binary coded digits. The two parts of a byte are called upper and lower nibble. The upper nibble
usually holds the more significant digit, which has advantages in calculations (special instructions in AVR
assembler language). The decimal number 250 would look like this when formatted as a packed BCD:

Byte Digits Value 8 4 2 1 8 4 2 1

2 4 & 3 02 0 0 0 0 0 0 1 0

1 2 & 1 50 0 1 0 1 0 0 0 0

; Instructions for setting:
LDI R17,0x02 ; Upper byte
LDI R16,0x50 ; Lower byte

To set this correct you can use the binary notation (0b...) or the hexadecimal notation (0x...) to set the
proper bits to their correct nibble position.

Calculating with packed BCDs is a little more complicated compared to the binary form. Format changes to
character strings are nearly as easy as with BCDs. Length of numbers and precision of calculations is only
limited by the storage space.

Numbers in ASCII-format
Very similar to the unpacked BCD format is to store numbers in ASCII format. The digits 0 to 9 are stored
using their ASCII (ASCII = American Standard Code for Information Interchange) representation. ASCII is
a very old format, developed and optimized for teletype writers, unnecessarily very complicated for
computer use (do you know what a char named End Of Transmission EOT meant when it was invented?),
very limited in range for other than US languages (only 7 bits per character), still used in communications
today due to the limited efforts of some operating system programmers to switch to more effective
character systems. This ancient system is only topped by the European 5-bit long teletype character set
called Baudot set or the Morse code, still used by some finger-nervous people.

Within the ASCII code system the decimal digit 0 is represented by the number 48 (hex 0x30, binary
0b0011.0000), digit 9 is 57 decimal (hex 0x39, binary 0b0011.1001). ASCII wasn't designed to have these
numbers on the beginning of the code set as there are already instruction chars like the above mentioned
EOT for the teletype. So we still have to add 48 to a BCD (or set bit 4 and 5 to 1) to convert a BCD to
ASCII. ASCII formatted numbers need the same storage space like BCDs. Loading 250 to a register set
representing that number would look like this:

LDI R18,'2'
LDI R17,'5'
LDI R16,'0'

The ASCII representation of these characters are written to the registers.

Bit manipulations
To convert a BCD coded digit to its ASCII representation we need to set bit 4 and 5 to a one. In other
words we need to OR the BCD with a constant value of hex 0x30. In assembler this is done like this:

ORI R16,0x30

If we have a register that is already set to hex 0x30 we can use the OR with this register to convert the
BCD:

OR R1,R2

Avr-Asm-Tutorial 40 http://www.avr-asm-tutorial.net

Back from an ASCII character to a BCD is as easy. The instruction

ANDI R16,0x0F

isolates the lower four bits (= the lower nibble). Note that ORI and ANDI are only possible with registers
above R15. If you need to do this, use one of the registers R16 to R31!

If the hex value 0x0F is already in register R2, you can AND the ASCII character with this register:

AND R1,R2

The other instructions for manipulating bits in a register are also limited for registers above R15. They
would be formulated like this:

SBR R16,0b00110000 ; Set bits 4 and 5 to one
CBR R16,0b00110000 ; Clear bits 4 and 5 to zero

If one or more bits of a byte have to be inverted you can use the following instruction (which is not possible
for use with a constant):

LDI R16,0b10101010 ; Invert all uneven bits
EOR R1,R16 ; in register R1 and store result in R1

To invert all bits of a byte is called the One's complement:

COM R1

inverts the content in register R1 and replaces zeros by one and vice versa. Different from that is the Two's
complement, which converts a positive signed number to its negative complement (subtracting from zero).
This is done with the instruction

NEG R1

So +1 (decimal: 1) yields -1 (binary 1.1111111), +2 yields -2 (binary 1.1111110), and so on.

Besides the manipulation of the bits in a register, copying a single bit is possible using the so-called T-bit
of the status register. With

BST R1,0

the T-bit is loaded with a copy of bit 0 in register R1. The T-bit can be set or cleared, and its content can be
copied to any bit in any register:

CLT ; clear T-bit, or
SET ; set T-bit, or
BLD R2,2 ; copy T-bit to register R2, bit 2

Shift and rotate
Shifting and rotating of binary numbers means multiplying and dividing them by 2. Shifting has several sub-
instructions.

Multiplication with 2 is easily done by shifting all bits of a byte one binary digit left and writing a zero to the
least significant bit. This is called logical shift left or LSL. The former bit 7 of the byte will be shifted out to
the carry bit in the status register.

LSL R1

The inverse division by 2 is the instruction called logical shift right, LSR.

LSR R1

The former bit 7, now shifted to bit 6, is filled with a 0, while the former bit 0 is shifted into the carry bit of
the status register. This carry bit could be used to round up and down (if set, add one to the result).
Example, division by four with rounding:

LSR R1 ; division by 2
BRCC Div2 ; Jump if no round up
INC R1 ; round up

Div2:
LSR R1 ; Once again division by 2
BRCC DivE ; Jump if no round up
INC R1 ; Round Up

DivE:

So, dividing is easy with binaries as long as you divide by multiples of 2.

If signed integers are used the logical shift right would overwrite the sign-bit in bit 7. The instruction
„arithmetic shift right“ ASR leaves bit 7 untouched and shifts the 7 lower bits, inserting a zero into bit
location 6.

ASR R1

Like with logical shifting the former bit 0 goes to the carry bit in the status register.

Avr-Asm-Tutorial 41 http://www.avr-asm-tutorial.net

What about multiplying a 16-bit word by 2? The most significant bit of the lower byte has to be shifted to
yield the lowest bit of the upper byte. In that step a shift would set the lowest bit to zero, but we need to
shift the carry bit from the previous shift of the lower byte into bit 0 of the upper byte. This is called a rotate.
During rotation the carry bit in the status register is shifted to bit 0, the former bit 7 is shifted to the carry
during rotation.

LSL R1 ; Logical Shift Left of the lower byte
ROL R2 ; ROtate Left of the upper byte

The logical shift left in the first instruction shifts bit 7 to carry, the ROL instruction rolls it to bit 0 of the upper
byte. Following the second instruction the carry bit has the former bit 7 of the upper byte. The carry bit can
be used to either indicate an overflow (if 16-bit-calculation is performed) or to roll it into more upper bytes
(if more than 16 bit calculation is done).

Rolling to the right is also possible, dividing by 2 and shifting carry to bit 7 of the result:

LSR R2 ; Logical Shift Right, bit 0 to carry
ROR R1 ; ROtate Right and shift carry in bit 7

It's easy dividing with big numbers. You see that learning assembler is not THAT complicated.

The last instruction that shifts four bits in one step is very often used with packed BCDs. This instruction
shifts a whole nibble from the upper to the lower position and vice versa. In our example we need to shift
the upper nibble to the lower nibble position. Instead of using

ROR R1
ROR R1
ROR R1
ROR R1

we can perform that with a single

SWAP R1

This instruction exchanges the upper and lower nibble. Note that the content of the upper nibble will be
different after applying these two methods.

Adding, subtracting and comparing
The following calculation operations are too complicated for the beginners and demonstrate that assembler
is only for extreme experts, hi. Read on your own risk!

Adding and subtracting 16-bit numbers
To start complicated we add two 16-bit-numbers in R1:R2 and R3:R4. (In this notation, we mean that the
first register is the most significant byte, the second the least significant).

ADD R2,R4 ; first add the two low-bytes
ADC R1,R3 ; then the two high-bytes

Instead of a second ADD we use ADC in the second instruction. That means add with carry, which is set or
cleared during the first instruction, depending from the result. Already scared enough by that complicated
math? If not: take this!

We subtract R3:R4 from R1:R2.

SUB R2,R4 ; first the low-byte
SBC R1,R3 ; then the high-byte

Again the same trick: during the second instruction we subtract another 1 from the result if the result of the
first instruction had an overflow. Still breathing? If yes, handle the following!

Comparing 16-bit numbers
Now we compare a 16-bit-word in R1:R2 with the one in R3:R4 to evaluate whether it is bigger than the
second one. Instead of SUB we use the compare instruction CP, instead of SBC we use CPC:

CP R2,R4 ; compare lower bytes
CPC R1,R3 ; compare upper bytes

If the carry flag is set now, R1:R2 is larger than R3:R4.

Comparing with constants
Now we add some more complicated stuff. We compare the content of R16 with a constant: 0b10101010.

CPI R16,0xAA

If the Zero-bit in the status register is set after that, we know that R16 is equal to 0xAA. If the carry-bit is
set, we know, it is smaller. If Carry is not set and the Zero-bit is not set either, we know it is larger.

And now the most complicated test. We evaluate whether R1 is zero or negative:

Avr-Asm-Tutorial 42 http://www.avr-asm-tutorial.net

TST R1

If the Z-bit is set, the register R1 is zero and we can follow with the instructions BREQ, BRNE, BRMI,
BRPL, BRLO, BRSH, BRGE, BRLT, BRVC or BRVS to branch around a little bit.

Packed BCD math
Still with us? If yes, here is some packed BCD calculations. Adding two packed BCDs can result in two
different overflows. The usual carry shows an overflow, if the higher of the two nibbles overflows to more
than 15 decimal. Another overflow, from the lower to the upper nibble occurs, if the two lower nibbles add
to more than 15 decimal.

To take an example we add the packed BCDs 49 (=hex 49) and 99 (=hex 99) to yield 148 (=hex 0x0148).
Adding these in binary math, results in a byte holding hex 0xE2, no byte overflow occurs. The lower of the
two nibbles should have an overflow, because 9+9=18 (more than 9) and the lower nibble can only handle
numbers up to 15. The overflow was added to bit 4, the lowest significant bit of the upper nibble. Which is
correct! But the lower nibble should be 8 and is only 2 (18 = 0b0001.0010). We should add 6 to that nibble
to yield a correct result. Which is quite logic, because whenever the lower nibble reaches more than 9 we
have to add 6 to correct that nibble.

The upper nibble is totally incorrect, because it is 0xE and should be 3 (with a 1 overflowing to the next
upper digit of the packed BCD). If we add 6 to this 0xE we get to 0x4 and the carry is set (=0x14). So the
trick is to first add these two numbers and then add 0x66 to correct the 2 digits of the packed BCD. But
halt: what if adding the first and the second number would not result in an overflow to the next nibble? And
not result in a digit above 9 in the lower nibble? Adding 0x66 would then result in a totally incorrect result.
The lower 6 should only be added if the lower nibble either overflows to the upper nibble or results in a
digit larger than 9. The same with the upper nibble.

How do we know, if an overflow from the lower to the upper nibble has occurred? The MCU sets the H-bit
in the status register, the half-carry bit. The following shows the algorithm for the different cases that are
possible after adding two nibbles and adding hex 0x6 after that.

1. Add the nibbles. If overflow occurs (C for the upper nibbles, or H for the lower nibbles), add 6 to correct,
if not, do step 2.

2. Add 6 to the nibble. If overflow occurs (C resp. H), you're done. If not, subtract 6.

To program an example we assume that the two packed BCDs are in R2 and R3, R1 will hold the overflow,
and R16 and R17 are available for calculations. R16 is the adding register for adding 0x66 (the register R2
cannot add a constant value), R17 is used to correct the result depending from the different flags. Adding
R2 and R3 goes like that:

LDI R16,0x66 ; for adding 0x66 to the result
LDI R17,0x66 ; for later subtracting from the result
ADD R2,R3 ; add the two two-digit-BCDs
BRCC NoCy1 ; jump if no byte overflow occurs
INC R1 ; increment the next higher byte
ANDI R17,0x0F ; don't subtract 6 from the higher nibble

NoCy1:
BRHC NoHc1 ; jump if no half-carry occurred
ANDI R17,0xF0 ; don't subtract 6 from lower nibble

NoHc1:
ADD R2,R16 ; add 0x66 to result
BRCC NoCy2 ; jump if no carry occurred
INC R1 ; increment the next higher byte
ANDI R17,0x0F ; don't subtract 6 from higher nibble

NoCy2:
BRHC NoHc2 ; jump if no half-carry occurred
ANDI R17,0xF0 ; don't subtract 6 from lower nibble

NoHc2:
SUB R2,R17 ; subtract correction

 A little bit shorter than that:

LDI R16,0x66
ADD R2,R16
ADD R2,R3
BRCC NoCy
INC R1
ANDI R16,0x0F

NoCy:
BRHC NoHc
ANDI R16,0xF0

NoHc:
SUB R2,R16

Question to think about: Why is that equally correct, half as long and less complicated and where is the
trick?

Avr-Asm-Tutorial 43 http://www.avr-asm-tutorial.net

Format conversion for numbers
All number formats can be converted to any other format. The conversion from BCD to ASCII and vice
versa was already shown above (Bit manipulations).

Conversion of packed BCDs to BCDs, ASCII or Binaries
Conversion of packed BCDs is not very complicated either. First we have to copy the number to another
register. With the copied value we change nibbles using the SWAP instruction to exchange the upper and
the lower one. The upper part is cleared, e. g. by ANDing with 0x0F. Now we have the BCD of the upper
nibble and we can either use as is (BCD) or set bit 4 and 5 to convert it to an ASCII character. After that we
copy the byte again and treat the lower nibble without first SWAPping and get the lower BCD.

A little bit more complicated is the conversion of BCD digits to a binary. Depending on the numbers to be
handled we first clear the necessary bytes that will hold the result of the conversion. We then start with the
highest BCD digit. Before adding this to the result we multiply the result with 10. (Note that in the first step
this is not necessary, because the result is zero either).

In order to do the multiplication by 10, we copy the result to somewhere else. Then we multiply the result
by four (two left shifts resp. rolls). Adding the previously copied number to this yields a multiplication with 5.
Now a multiplication with 2 (left shift/roll) yields the 10-fold of the result. Finally we add the BCD and repeat
that algorithm until all decimal digits are converted. If, during one of these operations, there occurs a carry
of the result, the BCD is too large to be converted. This algorithm handles numbers of any length, as long
as the result registers are prepared.

Conversion of Binaries to BCD
The conversion of a binary to BCDs is more complicated than that. If we convert a 16-bit-binary we can
subtract 10,000 (0x2710), until an overflow occurs, yielding the first digit. Then we repeat that with 1,000
(0x03E8) to yield the second digit. And so on with 100 (0x0064) and 10 (0x000A), then the remainder is
the last digit. The constants 10,000, 1,000, 100 and 10 can be placed to the program memory storage in a
word wise organized table, like this:

DezTab:
.DW 10000, 1000, 100, 10

and can be read word-wise with the LPM instruction from the table.

An alternative is a table that holds the decimal value of each bit in the 16-bit-binary, e. g.

.DB 0,3,2,7,6,8

.DB 0,1,6,3,8,4

.DB 0,0,8,1,9,2

.DB 0,0,4,0,9,6

.DB 0,0,2,0,4,8 ; and so on until

.DB 0,0,0,0,0,1

Then you shift the single bits of the binary left out of the registers to the carry. If it is a one, you add the
number in the table to the result by reading the numbers from the table using LPM. This is more
complicated to program and a little bit slower than the above method.

A third method is to calculate the table value, starting with 000001, by adding this BCD with itself, each
time after you have shifted a bit from the binary to the right, and added to the BCD result.

Many methods, much to optimize here.

Multiplication
Multiplication of binary numbers is explained here.

Decimal multiplication
In order to multiply two 8-bit-binaries we remind ourselves, how this is done with decimal numbers:

 1234 * 567 = ?

 1234 * 7 = 8638

+ 1234 * 60 = 74040

+ 1234 * 500 = 617000

 1234 * 567 = 699678

========================

In single steps decimal:

Avr-Asm-Tutorial 44 http://www.avr-asm-tutorial.net

• We multiply the first number with the lowest significant digit of the second number and add this to the
result.

• We multiply the first number with 10 and then with the next higher digit of the second number and
add this to the result.

• We multiply the first number with 100, then with the third-highest digit, and add this to the result.

Binary multiplication
Now in binary. Multiplication with the single digits is not necessary, because there are only the digits 1 (add
the number) and 0 (don't add the number). Multiplication by 10 in decimal goes to multiplication by 2 in
binary mode. Multiplication by 2 is done easily, either by adding the number with itself, or by shifting all bits
one position left and writing a 0 to the void position on the right. You see that binary math is very much
easier than decimal. Why didn't mankind use this from the beginning?

AVR-Assembler program
The following source code demonstrates realization of multiplication in assembler.

; Mult8.asm multiplies two 8-bit-numbers to yield a 16-bit-result
;
.NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc"
.LIST
;
; Flow of multiplication
;
; 1.The binary to be multiplicated with is shifted bitwise into the carry bit. If it is a one, the binary number is added to the
; result, if it is not a one that was shifted out, the number is not added.
; 2.The binary number is multiplied by 2 by rotating it one position left, shifting a 0 into the void position.
; 3.If the binary to be multiplied with is not zero, the multiplication loop is repeated. If it is zero, the multiplication is done.
;
; Used registers
;
.DEF rm1 = R0 ; Binary number to be multiplicated (8 Bit)
.DEF rmh = R1 ; Interim storage
.DEF rm2 = R2 ; Binary number to be multiplicated with (8 Bit)
.DEF rel = R3 ; Result, LSB (16 Bit)
.DEF reh = R4 ; Result, MSB
.DEF rmp = R16 ; Multi purpose register for loading
;
.CSEG
.ORG 0000
;
 rjmp START
;
START:
 ldi rmp,0xAA ; example binary 1010.1010
 mov rm1,rmp ; to the first binary register
 ldi rmp,0x55 ; example binary 0101.0101
 mov rm2,rmp ; to the second binary register
;
; Here we start with the multiplication of the two binaries in rm1 and rm2, the result will go to reh:rel (16 Bit)
;
MULT8:
;
; Clear start values
 clr rmh ; clear interim storage
 clr rel ; clear result registers
 clr reh
;
; Here we start with the multiplication loop
;
MULT8a:
;
; Step 1: Rotate lowest bit of binary number 2 to the carry flag (divide by 2, rotate a zero into bit 7)
;
 clc ; clear carry bit
 ror rm2 ; bit 0 to carry, bit 1 to 7 one position to the right, carry bit to bit 7
;
; Step 2: Branch depending if a 0 or 1 has been rotated to the carry bit
;
 brcc MULT8b ; jump over adding, if carry has a 0
;
; Step 3: Add 16 bits in rmh:rml to the result, with overflow from LSB to MSB
;
 add rel,rm1 ; add LSB of rm1 to the result
 adc reh,rmh ; add carry and MSB of rm1
;
MULT8b:
;
; Step 4: Multiply rmh:rm1 by 2 (16 bits, shift left)
;

Avr-Asm-Tutorial 45 http://www.avr-asm-tutorial.net

 clc ; clear carry bit
 rol rm1 ; rotate LSB left (multiply by 2)
 rol rmh ; rotate carry into MSB and MSB one left
;
; Step 5: Check if there are still one's in binary 2, if yes, go on multiplicating
;
 tst rm2 ; all bits zero?
 brne MULT8a ; if not, go on in the loop
;
; End of the multiplication, result in reh:rel
;
; Endless loop
;
LOOP:
 rjmp loop

Binary rotation
For understanding the multiplication operation,
it is necessary to understand the binary
rotation instructions ROL and ROR. These
instructions shift all bits of a register one
position left (ROL) resp. right (ROR). The void
position in the register is filled with the content
of the carry bit in the status register, the bit that
rolls out of the register is shifted to this carry
bit. This operation is demonstrated using 0xAA
as an example for ROL and 0x55 as an
example for ROR.

Multiplication in the studio
The following screen shots show the multiplication program in the simulator (to make a difference: here

Studio version 3).

The object-code has been
opened, the cursor is placed
on the first executable
instruction. F11 does single
steps.

Avr-Asm-Tutorial 46 http://www.avr-asm-tutorial.net

The registers R0 and R2 are
set to 0xAA and 0x55, our test
binaries, to be multiplied.

R2 is rotated to the
right, to roll the least
significant bit into the
carry bit. 0x55
(0101.0101) yielded
0x2A (0010.1010).

Because the carry bit
had a one, the
content of the
registers R1:R0 is
added to the (empty)
register pair R4:R3,
resulting in 0x00AA
there.

Avr-Asm-Tutorial 47 http://www.avr-asm-tutorial.net

Now the register pair
R1:R0 is rotated one
position left to
multiply this binary
by 2. From 0x00AA,
multiplication by 2
yields 0x0154.

The whole multipli-
cation loop is repea-
ted as long there is
at least one binary 1
in register R2. These
following loops are
not shown here.

Using key F5 of the
studio we multi-
stepped over these
loops to a break-
point at the end of
the multiplication
routine. The result
register pair R4:R3
has the result of
the multiplication of
0xAA by 0x55:
0x3872.

This wasn't that complicated, just remind yourself on the similar decimal operations. Binary multiplication is
much easier than decimal.

Hardware multiplication
All ATmega, ATXmega, AT90CAN and AT90PWM have an on-board hardware multiplicator, that performs
8 by 8 bit multiplications in only two clock cycles. So whenever you have to do multiplications and you are
sure that this software never ever needs not to run on an AT90S- or ATtiny-chip, you can make use of this
hardware feature.

The following shows how to multiply

● 8-by-8-binaries,

● 16-by-8-binaries,

● 16-by-16-binaries,

● 16-by-24-binaries.

Hardware multiplication of 8-by-8-bit binaries
The use is simple and straight-forward: if the two binaries to be multiplied are in the registers R16 and
R17, just type

Avr-Asm-Tutorial 48 http://www.avr-asm-tutorial.net

mul R16,R17

As the result of these two 8-bit
binaries might be up two 16 bits
long, the result will be in the
registers R1 (most significant byte)
and R0 (least significant byte).
That's all about it.

The program demonstrates the simulation in
the Studio. It multiplies decimal 250 (hex FA)
by decimal 100 (hex 64), in the registers R16
and R17.

After execution, the
registers R0 (LSB) and
R1 (MSB) hold the result
hex 61A8 or decimal
25,000.

And: yes, that requires
only two cycles, or 2
microseconds with a 1
Mcs/s clock.

Hardware multiplication of a 16- by an 8-bit-binary
You have a larger binary to multiply? Hardware is limited to 8, so we need to invest some genius ideas
instead. To solve the problem with larger binaries, we just look at this combination of 16 and 8 first.
Understanding this concept helps understanding the method, so you will be able to solve the 32-by-64-bit
multiplication problem later.

First the math: a 16-bit-binary m1M:m1L are simply two 8-bit-binaries m1M and m1L, where the most
significant one m1M of these two is multiplied by decimal 256 or hex 100. (For those who need a reminder:
the decimal 1234 is simply (12 multiplied by 100) plus 34, or (1 multiplied by 1000) plus (2 multiplied by
100) plus (3 multiplied by 10) plus 4.

So the 16-bit-binary m1 is equal to 256*m1M
plus m1L, where m1M is the MSB and m1L is
the LSB. Multiplying m1 by 8-bit-binary m2 so
is, mathematically formulated:

● m1 * m2 = (256*m1M + m1L) * m2, or

● 256*m1M*m2 + m1L*m2.

So we just need to do two multiplications and
to add both results. Sorry, if you see three

asterisks in the formula: the multiplication with 256 in the binary world doesn't require any hardware at all,
because it is a simple move to the next higher byte. Just like the multiplication by 10 in the decimal world is
simply moving the number one left and write a zero to the least significant digit.

So let's go to a practical example. First we need some registers to

● load the numbers m1 and m2,

● provide space for the result, which might have 24 bits length.

;

Avr-Asm-Tutorial 49 http://www.avr-asm-tutorial.net

; Test hardware multiplication 16-by-8-bit
;
; Register definitions:
;
.def Res1 = R2
.def Res2 = R3
.def Res3 = R4
.def m1L = R16
.def m1M = R17
.def m2 = R18

First we load the numbers:

;
; Load Registers
;
.equ m1 = 10000
;

ldi m1M,HIGH(m1) ; upper 8 bits of m1 to m1M
ldi m1L,LOW(m1) ; lower 8 bits of m1 to m1L
ldi m2,250 ; 8-bit constant to m2

The two numbers are loaded into R17:R16 (dec 10000 = hex
2710) and R18 (dec 250 = hex FA).

Then we multiply the LSB first:

;
; Multiply
;

mul m1L,m2 ; Multiply LSB
mov Res1,R0 ; copy result to result register
mov Res2,R1

The LSB multiplication of hex 27 by hex FA yields hex 0F0A,
written to the registers R00 (LSB, hex A0) and R01 (MSB,
hex 0F). The result is copied to the lower two bytes of the
result register, R3:R2.

Now the multiplication of the MSB of m1 with m2 follows:

mul m1M,m2 ; Multiply MSB

The multiplication of the MSB of m1, hex 10, with m2, hex FA,
yields hex 2616 in R1:R0.

Now two steps are performed at once: multiplication by 256
and adding the result to the previous result. This is done by
adding R1:R0 to Res3:Res2 instead of Res2:Res1. R1 can
just be copied to Res3. R0 is added to Res2 then. If the carry
is set after adding, the next higher byte Res3 is increased by
one.

mov Res3,R1 ; copy MSB result to result byte 3
add Res2,R0 ; add LSB result to result byte 2
brcc NoInc ; if not carry, jump
inc Res3

NoInc:

The result in R4:R3:R2 is hex 2625A0, which is decimal
2500000 (as everybody knows), and is obviously correct.

Avr-Asm-Tutorial 50 http://www.avr-asm-tutorial.net

The cycle counter of the multiplication points to 10, at 1 MHz
clock a total of 10 microseconds. Very much faster than
software multiplication!

Hardware multiplication of a 16- by a 16-bit-binary
Now that we have understood the principle, it should be easy to do 16-by-16. The result requires four bytes
now (Res4:Res3:Res2:Res1, located in R5:R4:R3:R2). The formula is:

m1 * m2 = (256*m1M + m1L) *

(256*m2M + m2L)

= 65536*m1M*m2M +

256*m1M*m2L +

256*m1L*m2M +

m1L*m2L

Obviously four multiplications now. We start with the first and the last as the two easiest ones: their results
are simply copied to the correct result register positions. The results of the two multiplications in the middle
of the formula have to be added to the middle of our result registers, with possible carry overflows to the
most significant byte of the result. To do that, you will see a simple trick that is easy to understand. The
software:

;
; Test Hardware Multiplication 16 by 16
;
; Define Registers
;
.def Res1 = R2
.def Res2 = R3
.def Res3 = R4
.def Res4 = R5
.def m1L = R16
.def m1M = R17
.def m2L = R18
.def m2M = R19
.def tmp = R20
;
; Load input values
;
.equ m1 = 10000
.equ m2 = 25000
;

ldi m1M,HIGH(m1)
ldi m1L,LOW(m1)
ldi m2M,HIGH(m2)
ldi m2L,LOW(m2)

;
; Multiply
;

clr R20 ; clear for carry operations
mul m1M,m2M ; Multiply MSBs
mov Res3,R0 ; copy to MSW Result
mov Res4,R1
mul m1L,m2L ; Multiply LSBs
mov Res1,R0 ; copy to LSW Result
mov Res2,R1
mul m1M,m2L ; Multiply 1M with 2L
add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp ; add carry
mul m1L,m2M ; Multiply 1L with 2M

Avr-Asm-Tutorial 51 http://www.avr-asm-tutorial.net

add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp

;
; Multiplication done
;

Simulation shows the following steps.

Loading the two constants 10000 (hex 2710) and 25000 (hex
61A8) to the registers in the upper register space ...

Multiplying the two MSBs (hex 27 and 61) and copying the
result in R1:R0 to the two most upper result registers
R5:R4 ...

Multiplying the two LSBs (hex 10 and A8) and copying the
result in R1:R0 to the two lower result registers R3:R2 ...

Multiplying the MSB of m1 with the LSB of m2 and adding the
result in R1:R0 to the result register's two middle bytes, no
carry occurred ...

Multiplying the LSB of m1 with the MSB of m2 and adding the
result in R1:R0 to the result register's two middle bytes, no
carry occurred. The result is hex 0EE6B280, which is
250000000 and obviously correct ...

Multiplication
needed 19 clock cycles, which is very much faster than with
software multiplication. Another advantage here: the required
time is ALWAYS exactly 19 cycles, and it doesn't depend on
the input numbers (like is the case with software multiplication
and on overflow occurrences (thanks to our small trick of
adding zero with carry). So you can rely on this ...

Avr-Asm-Tutorial 52 http://www.avr-asm-tutorial.net

Hardware multiplication of a 16- by a 24-bit-binary
The multiplication of a 16 bit
binary "a" with a 24 bit binary "b"
leads to results with up to 40 bit
length. The multiplication
scheme requires six 8-by-8-bit
multiplications and adding the
results to the appropriate
position in the result registers.

The assembler source code for
this:

; Hardware Multiplication 16 by 24 bit
.include "m8def.inc"
;
; Register definitions
.def a1 = R2 ; define 16-bit register
.def a2 = R3
.def b1 = R4 ; define 24-bit register
.def b2 = R5
.def b3 = R6
.def e1 = R7 ; define 40-bit result register
.def e2 = R8
.def e3 = R9
.def e4 = R10
.def e5 = R11
.def c0 = R12 ; help register for adding
.def rl = R16 ; load register
;
; Load constants
.equ a = 10000 ; multiplicator a, hex 2710
.equ b = 1000000 ; multiplicator b, hex 0F4240

ldi rl,BYTE1(a) ; load a
mov a1,rl
ldi rl,BYTE2(a)
mov a2,rl
ldi rl,BYTE1(b) ; load b
mov b1,rl
ldi rl,BYTE2(b)
mov b2,rl
ldi rl,BYTE3(b)
mov b3,rl

;
; Clear registers

clr e1 ; clear result registers
clr e2
clr e3
clr e4
clr e5
clr c0 ; clear help register

;
; Multiply

mul a2,b3 ; term 1
add e4,R0 ; add to result
adc e5,R1
mul a2,b2 ; term 2
add e3,R0
adc e4,R1
adc e5,c0 ; (add possible carry)
mul a2,b1 ; term 3
add e2,R0
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b3 ; term 4
add e3,R0
adc e4,R1
adc e5,c0
mul a1,b2 ; term 5
add e2,R0
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b1 ; term 6
add e1,R0
adc e2,R1
adc e3,c0

Avr-Asm-Tutorial 53 http://www.avr-asm-tutorial.net

adc e4,c0
adc e5,c0

;
; done.

nop
; Result should be hex 02540BE400

The complete execution requires

● 10 clock cycles for loading the constants,

● 6 clock cycles for clearing registers, and

● 33 clock cycles for multiplication.

Division
No, unfortunately there is no hardware division. You need to do this in software!

Decimal division
Again we start with the decimal division, to better understand the binary division. We assume a division of
5678 by 12. This is done like this:

 5678 : 12 = ?

- 4 * 1200 = 4800

 878
- 7 * 120 = 840

 38
- 3 * 12 = 36
 --
 2
Result: 5678 : 12 = 473 Remainder 2
===================================

Binary division
In binary the multiplication of the second number in the above decimal example (4 * 1200, etc.) is not
necessary, due to the fact that we have only 0 and 1 as digits. Unfortunately binary numbers have much
more single digits than their decimal equivalent, so transferring the decimal division to its binary equivalent
is a little bit inconvenient. So the program works a bit different than that.

The division of a 16-bit binary number by a 8-bit binary in AVR assembler is listed in the following section.

; Div8 divides a 16-bit-number by a 8-bit-number (Test: 16-bit-number: 0xAAAA, 8-bit-number: 0x55)
.NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc" ; adjust the correct path to your system!
.LIST
; Registers
.DEF rd1l = R0 ; LSB 16-bit-number to be divided
.DEF rd1h = R1 ; MSB 16-bit-number to be divided
.DEF rd1u = R2 ; interim register
.DEF rd2 = R3 ; 8-bit-number to divide with
.DEF rel = R4 ; LSB result
.DEF reh = R5 ; MSB result
.DEF rmp = R16; multipurpose register for loading
;
.CSEG
.ORG 0
 rjmp start
start:
; Load the test numbers to the appropriate registers
 ldi rmp,0xAA ; 0xAAAA to be divided
 mov rd1h,rmp
 mov rd1l,rmp
 ldi rmp,0x55 ; 0x55 to be divided with
 mov rd2,rmp
; Divide rd1h:rd1l by rd2
div8:
 clr rd1u ; clear interim register
 clr reh ; clear result (the result registers
 clr rel ; are also used to count to 16 for the
 inc rel ; division steps, is set to 1 at start)
; Here the division loop starts
div8a:
 clc ; clear carry-bit
 rol rd1l ; rotate the next-upper bit of the number
 rol rd1h ; to the interim register (multiply by 2)
 rol rd1u
 brcs div8b ; a one has rolled left, so subtract

Avr-Asm-Tutorial 54 http://www.avr-asm-tutorial.net

 cp rd1u,rd2 ; Division result 1 or 0?
 brcs div8c ; jump over subtraction, if smaller
div8b:
 sub rd1u,rd2; subtract number to divide with
 sec ; set carry-bit, result is a 1
 rjmp div8d ; jump to shift of the result bit
div8c:
 clc ; clear carry-bit, resulting bit is a 0
div8d:
 rol rel ; rotate carry-bit into result registers
 rol reh
 brcc div8a ; as long as zero rotate out of the result registers: go on with the division loop
; End of the division reached
stop:
 rjmp stop ; endless loop

Program steps during division
During execution of the program the following steps are ran:

• Definition and preset of the registers with the test binaries,

• presetting the interim register and the result register pair (the result registers are presetted to
0x0001! After 16 rotations the rolling out of the one stops further division steps.),

• the 16-bit-binary in rd1h:rd1l is rotated bitwise to the interim register rd1u (multiplication by 2), if a 1
is rotated out of rd1u, the program branches to the subtraction step in step 4 immediately,

• the content of the interim register is compared with the 8-bit binary in rd2, if rd2 is smaller it is
subtracted from the interim register and the carry-bit is set to one, if rd2 is greater the subtraction is
skipped and a zero is set to the carry flag,

• the content of the carry flag is rotated into the result register reh:rel from the right,

• if a zero rotated out of the result register, we have to repeat the division loop, if it was a one the
division is completed.

If you don't understand rotation yet you'll find this operation discussed in the multiplication section.

Division in the simulator
The following screen shots demonstrate the
program steps in the studio (here in version
3, so it looks different). To do this, you have
to assemble the source code and open the
resulting object file in the studio.

The object code has been started, the
cursor (yellow arrow) is on the first
executable instruction. The key F11
performs single steps.

The test binaries 0xAAAA and
0x55, to be divided, have
been written to the registers
R1:R0 and R3.

Avr-Asm-Tutorial 55 http://www.avr-asm-tutorial.net

The interim register R2 and
the result register pair are set
to their predefined values.

R1:R0 was rotated left to R2,
from 0xAAAA the doubled
value of 0x015554 was
yielded.

No overflow from rotation
into carry has occurred and
0x01 in R2 was smaller than
0x55 in R3, so subtraction
was skipped. A zero in the
carry is rotated into the result
register R5:R4. The former
content of the result register,
a single 1-bit in position 0
has rotated to position 1
(content now: 0x0002). As a
zero was rotated out of the
result register pair, the next
step to be executed is a
branch to the beginning of

the division loop start
and the loop is repeated.

After executing the loop
16 times we have
reached the breakpoint
set at the end of the
division routine. The
result register in R5:R4
holds 0x0202, the result
of the division. The
registers R2:R1:R0 are
empty, so we do not
have a remainder left. If
a remainder would have
been resulted we can
use it to decide whether
an incrementation of the
result should take place,
rounding of the result up.
This step is not coded
here.

Avr-Asm-Tutorial 56 http://www.avr-asm-tutorial.net

The whole division needs 60 micro-seconds
processor time (open a processor view in
the studio menu). A rather long time for a
division.

Number conversion
Number conversion routines are not included here. Please refer to the website at

http://www.avr-asm-tutorial.net/avr_en

if you need the source code or a better understanding.

Decimal Fractions
First: Do not use any floating points, unless you really need them. Floating points are resource killers in an
AVR, lame ducks and need extreme execution times. Run into this dilemma, if you think assembler is too
complicated, and you prefer Basic or other languages like C or Pascal.

Not so, if you use assembler. You'll be shown here, how you can perform the multiplication of a fixed point
real number in less than 60 micro-seconds, in special cases even within 18 micro-seconds, at 4 MHz clock
frequency. Without any floating point processor extensions and other expensive tricks for people too lazy
to use their brain.

How to do that? Back to the roots of math! Most tasks with floating point reals can be done using integer
numbers. Integers are easy to program in assembler and perform fast. The decimal point is only in the
brain of the programmer, and is added somewhere in the decimal digit stream. No one realizes, that this is
a trick.

Linear conversions
As an example the following task: an 8-Bit-AD-Converter measures an input signal in the range from 0.00
to 2.55 Volt, and returns as the result a binary in the range from $00 and $FF. The result, a voltage, is to
be displayed on a LCD display. Silly example, as it is so easy: The binary is converted to a decimal ASCII
string between 000 and 255, and just behind the first digit the decimal point has to be inserted. Done!

The electronics world sometimes is more complicated. E. g., the AD-Converter returns an 8-Bit-Hex for
input voltages between 0.00 and 5.00 Volt. Now we're tricked and do not know how to proceed. To display
the correct result on the LCD we would have to multiply the binary by 500/255, which is 1.9608. This is a
silly number, as it is almost 2, but only almost. And we don't want that kind of inaccuracy of 2%, while we
have an AD-converter with around 0.25% accuracy.

To cope with this, we multiply the input by 500/255*256 or 501.96 and divide the result by 256. Why first
multiply by 256 and then divide by 256? It's just for enhanced accuracy. If we multiply the input by 502
instead of 501.96, the error is just in the order of 0.008%. That is good enough for our AD-converter, we
can live with that. And dividing by 256 is an easy task, because it is a well-known power of 2. By dividing
with numbers that are a power of 2, the AVR feels very comfortable and performs very fast. By dividing
with 256, the AVR is even faster, because we just have to skip the last byte of the binary number. Not even
shift and rotate!

The multiplication of an 8-bit-binary with the 9-bit-binary 502 (hex 1F6) can have a result larger than 16
bits. So we have to reserve 24 bits or 3 registers for the result. During multiplication, the constant 502 has
to be shifted left (multiplication by 2) to add these numbers to the result each time a one rolls out of the
shifted input number. As this might need eight shifts left, we need further three bytes for this constant. So
we chose the following combination of registers for the multiplication:

Number Value (example) Register

Input value 255 R1

Multiplicand 502 R4 : R3 : R2

Result 128,010 R7 : R6 : R5

After filling the value 502 (00.01.F6) to R4 : R3 : R2 and clearing the result registers R7 : R6 : R5, the
multiplication goes like this:

http://www.avr-asm-tutorial.net/avr_en

Avr-Asm-Tutorial 57 http://www.avr-asm-tutorial.net

1. Test, if the input number is already zero. If yes, we're done.

2. If no, one bit of the input number is shifted out of the register to the right, into the carry, while a zero
is stuffed into bit 7. This instruction is named Logical-Shift-Right or LSR.

3. If the bit in carry is a one, we add the multiplicand (during step 1 the value 502, in step 2 it's 1004,
a. s. o.) to the result. During adding, we care for any carry (adding R2 to R5 by ADD, adding R3 to
R6 and R4 to R7 with the ADC instruction!). If the bit in the carry was a zero, we just don't add the
multiplicand to the result and jump to the next step.

4. Now the multiplicand is multiplied by 2, because the next bit shifted out of the input number is worth
double as much. So we shift R2 to the left (by inserting a zero in bit 0) using LSL. Bit 7 is shifted to
the carry. Then we rotate this carry into R3, rotating its content left one bit, and bit 7 to the carry. The
same with R4.

5. Now we're done with one digit of the input number, and we proceed with step 1 again.

The result of the multiplication by 502 now is in the result registers R7 : R6 : R5. If we just ignore register
R5 (division by 256), we have our desired result. To enhance accuracy, we can use bit 7 in R5 to round the
result. Now we just have to convert the result from its binary form to decimal ASCII (see Conversion bin to
decimal-ASCII on the website). If we just add a decimal point in the right place in the ASCII string, our
voltage string is ready for the display.

The whole program, from the input number to the resulting ASCII string, requires between 79 and 228
clock cycles, depending from the input number. Those who want to beat this with the floating point routine
of a more sophisticated language than assembler, feel free to mail me your conversion time (and program
flash and memory usage).

Example 1: 8-bit-AD-converter with fixed decimal output
; Demonstrates floating point conversion in Assembler, (C)2003 www.avr-asm-tutorial.net
;
; The task: You read in an 8-bit result of an analogue-digital-converter, number is in the range from hex 00 to FF.
; You need to convert this into a floating point number in the range from 0.00 to 5.00 Volt
; The program scheme:
; 1. Multiplication by 502 (hex 01F6).That step multiplies by 500, 256 and divides by 255 in one step!
; 2. Round the result and cut the last byte of the result. This step divides by 256 by ignoring the last byte of the result.
; Before doing that, bit 7 is used to round the result.
; 3. Convert the resulting word to ASCII and set the correct decimal sign. The resulting word in the range from 0 to 500
; is displayed in ASCII-characters as 0.00 to 5.00.
; The registers used:
; The routines use the registers R8..R1 without saving these before. Also required is a multipurpose register called rmp,
; located in the upper half of the registers. Please take care that these registers don't conflict with the register use in the
; rest of your program.
; When entering the routine the 8-bit number is expected in the register R1. The multiplication uses R4:R3:R2 to hold
; the multiplicator 502 (is shifted left max. eight times during multiplication). The result of the multiplication is calculated
; in the registers R7:R6:R5. The result of the so called division by 256 by just ignoring R5 in the result, is in R7:R6. R7:R6
; is rounded, depending on the highest bit of R5, and the result is copied to R2:R1.
; Conversion to an ASCII-string uses the input in R2:R1, the register pair R4:R3 as a divisor for conversion, and places the
; ASCII result string to R5:R6:R7:R8 (R6 is the decimal char).
; Other conventions:
; The conversion uses subroutines and the stack.The stack must work fine for the use of three levels (six bytes SRAM).
; Conversion times:
; The whole routine requires 228 clock cycles maximum (converting $FF), and 79 clock cycles minimum (converting $00).
; At 4 MHz the times are 56.75 microseconds resp. 17.75 microseconds.
; Definitions:
; Registers
.DEF rmp = R16 ; used as multi-purpose register
; AVR type: Tested for type AT90S8515, only required for stack setting, routines work fine with other AT90S-types also
.NOLIST
.INCLUDE "8515def.inc"
.LIST
; Start of test program
; Just writes a number to R1 and starts the conversion routine, for test purposes only
.CSEG
.ORG $0000
 rjmp main
main:
 ldi rmp,HIGH(RAMEND) ; Set the stack
 out SPH,rmp
 ldi rmp,LOW(RAMEND)
 out SPL,rmp
 ldi rmp,$FF ; Convert $FF
 mov R1,rmp
 rcall fpconv8 ; call the conversion routine
no_end: ; unlimited loop, when done
 rjmp no_end
; Conversion routine wrapper, calls the different conversion steps
fpconv8:
 rcall fpconv8m ; multiplicate by 502
 rcall fpconv8r ; round and divide by 256
 rcall fpconv8a ; convert to ASCII string

Avr-Asm-Tutorial 58 http://www.avr-asm-tutorial.net

 ldi rmp,'.' ; set decimal char
 mov R6,rmp
 ret ; all done
; Subroutine multiplication by 502
fpconv8m:
 clr R4 ; set the multiplicant to 502
 ldi rmp,$01
 mov R3,rmp
 ldi rmp,$F6
 mov R2,rmp
 clr R7 ; clear the result
 clr R6
 clr R5
fpconv8m1:
 or R1,R1 ; check if the number is all zeros
 brne fpconv8m2 ; still one's, go on convert
 ret ; ready, return back
fpconv8m2:
 lsr R1 ; shift number to the right (div by 2)
 brcc fpconv8m3 ; if the lowest bit was 0, then skip adding
 add R5,R2 ; add the number in R6:R5:R4:R3 to the result
 adc R6,R3
 adc R7,R4
fpconv8m3:
 lsl R2 ; multiply R4:R3:R2 by 2
 rol R3
 rol R4
 rjmp fpconv8m1 ; repeat for next bit
; Round the value in R7:R6 with the value in bit 7 of R5
fpconv8r:
 clr rmp ; put zero to rmp
 lsl R5 ; rotate bit 7 to carry
 adc R6,rmp ; add LSB with carry
 adc R7,rmp ; add MSB with carry
 mov R2,R7 ; copy the value to R2:R1 (divide by 256)
 mov R1,R6
 ret
; Convert the word in R2:R1 to an ASCII string in R5:R6:R7:R8
fpconv8a:
 clr R4 ; Set the decimal divider value to 100
 ldi rmp,100
 mov R3,rmp
 rcall fpconv8d ; get ASCII digit by repeated subtraction
 mov R5,rmp ; set hundreds string char
 ldi rmp,10 ; Set the decimal divider value to 10
 mov R3,rmp
 rcall fpconv8d ; get the next ASCII digit
 mov R7,rmp ; set tens string char
 ldi rmp,'0' ; convert the rest to an ASCII char
 add rmp,R1
 mov R8,rmp ; set ones string char
 ret
; Convert binary word in R2:R1 to a decimal digit by substracting the decimal divider value in R4:R3 (100, 10)
fpconv8d:
 ldi rmp,'0' ; start with decimal value 0
fpconv8d1:
 cp R1,R3 ; Compare word with decimal divider value
 cpc R2,R4
 brcc fpconv8d2 ; Carry clear, subtract divider value
 ret ; done subtraction
fpconv8d2:
 sub R1,R3 ; subtract divider value
 sbc R2,R4
 inc rmp ; up one digit
 rjmp fpconv8d1 ; once again
; End of conversion test routine

Example 2: 10-bit-AD-converter with fixed decimal output
This example is a bit more complicated. Refer to the website if you need it.

Avr-Asm-Tutorial 59 http://www.avr-asm-tutorial.net

Floating point numbers in assembler language

Floating points, if necessary
Those who want to make life more complicated than necessary: besides whole numbers (integers), signed
integers and fixed dot numbers floating point numbers are available. What comes in higher-level
languages simply as 1.234567 is rather complicated in assembler. And that comes as follows.

The format of floating point numbers
Binary floating points consist of two constituents:

1. a mantissa, and
2. an exponent.

In the decimal world the mantissa gives the normal number part, in 1.234567 this is the 1.234567. The
precision of the number is given by the seven digits. The exponent says how often the mantissa has to be
multiplied by 10 (the base in the decimal world). In our example this would be a zero. The number could
also be written as 0.1234567*101 or shorter as 0.1234567E+01, which says: shift the mantissa one time
left. It could also be written as 12.34567E-01 to say: shift the mantissa one time right. The formulation
1.234567E+00 is called normalized in that it

• it has only one single digit left of the dot, and
• this digit is not zero.

Numbers larger than 9.999999 are
repeatedly divided by 10, by that
increasing the exponent. Numbers
smaller than 1 are repeatedly multiplied
by 10, by that decreasing the exponent.
Numbers smaller than one have a
negative exponent. That is why the
exponent has to be a signed integer.

Numbers themselves also can be
negative, such as -1.234567. Because
multiplying and dividing does not
change the sign, the mantissa also
needs a sign bit. So we can handle
positive as well as negative numbers,
such as -182.162°C as the boiling point
of oxygen. Of course we'll have to
divide this boiling point by 100 to get a
normalized mantissa, and its exponent
will be plus two. Normalized we'll get -
1.82162E+02 for that boiling point.

Converted to the binary world, where the base is 2, the floating point numbers need at least two bytes: one
for the mantissa and one for the exponent. Both are signed integers. The meaning of one bit in the
mantissa and one bit in the exponent is very different:

1. In the mantissa each bit, starting from the dot, or better: from its highest non-sign-bit, stands for 1
divided by 2, powered by n, where n is its position in the mantissa. So the first bit is 1 / 2^1 = 1 / 2,
or in decimal 0.5. Each further bit stands for half of the previous bit, so the next in the line is 0.25,
the over-next is 0,125 etc. etc.

2. The exponent is simpler to understand: in an 8-bit exponent it reaches from zero to 127
(hexadecimal 0x00 to 0x7F) for positive exponents and from -1 to -128 (hexadecimal 0xFF for -1,
0x80 for -128) for negative exponents. This says that for each positive number the mantissa has to
be shifted n positions to the left, for negative ones shifted one position to the right. A left shift
means multiplying the mantissa by two, right shift a division by two.

Because the exponent shifts the number by its power of two (* 2 ^), each bit of it is more powerful than a bit
in the mantissa. So 2^127 is 1.7-multiplied by-10-power-38 or 1.7*1038 or even shorter 1.7E38. Vice versa,

Avr-Asm-Tutorial 60 http://www.avr-asm-tutorial.net

negative exponents make the exponent part of the number very small: 2^-128 is decimal 2.9E-39. With
eight bit exponent only we can cover the range of numbers between 2.9E-39 to 1.7E+38. That should be
enough large or small, not for an astronomer but for most of the rest of the calculating mankind. So an 8-bit
exponent is sufficient.

Very small are the variations that come with the mantissa: as can be seen from an 8-bit mantissa's 0x7F
that its decimal value is only 0.992 and by only 0.008 below the one. So we can one handle numbers with
slightly more than two digit (2 1/2) precision in an 8-bit mantissa. By far not enough for calculating interest
rates or other commercial stuff or in engineering, only suitable for rather rough technical measurements. 8-
bit mantissa's are of the same accuracy as an ancient slide rule (for those who are still familiar with that
kind of calculating machines).

To increase the precision we add additional eight bits to the mantissa. The lowest of the mantissa's bits
stands now for 0.0000305. This increases the precision to slightly more than four digits. If we would add
another byte to the mantissa we are at slightly more than six decimal digits, the complete number has
already 32 bits or four bytes. 16-bit mantissas are not precise enough to calculate Mandelbrot-sets, but are
suitable for most technical applications.

If you need higher resolutions, pick a needed
style from this table.

Because one additional mantissa bit can
increase precision by roughly a half decimal
digit, the inventors of binary floats increased it
by one with a trick: because a normalized
binary mantissa always starts with a one, this
bit can be skipped and an additional bit fits
into the 16 bit mantissa at the end. These
kind of tricks increase the variability of floating
number formats and make it more and more
complicated to understand: of course the skipped one-bit on top has to be added when calculating with the
mantissa. It can replace the mantissa's sign bit, if that bit sign bit is stored elsewhere.

An advantage do those floats have: they simplify the multiplication and division of two floats. If we have to
multiply two floats with their mantissas M1 and M2, we can simply multiply the two mantissas and, even
more simple, add their two exponents E1 and E2. When dividing, we have to subtract E2 from E1.

The simplification when multiplying is associated by a higher effort when adding or subtracting. Before we
can add the two mantissas we have to bring their exponents to the same value (by shifting the mantissa of
the smaller number to the right). Only when both are equal, we can add both mantissas.

Conversion of binary to decimal number format
To demonstrate that handling binary float numbers is rather extensive, I have shown the conversion of a
24-bit float with a 16-bit mantissa in detail. The software for doing that has 410 code lines and needs a few
milli-seconds in an AVR. How this is done is documented on this page here. If you want to learn
assembler: this is a more high-level example, with lots of pointers. I hope that you enjoy the understanding
of a more complex task.

Conclusion:

Those who are clever and do not need numbers up to 1038 (or even larger) avoid floats and rather use
integers or fixed floating point numbers (Pseudo-floats). Those are by far simpler to handle, easier to
understand and it is rather simpler to adjust their precision to the given practical needs.

Converting floating point numbers to decimal in
assembler language
To convert floating point binaries into decimal (ASCII) numbers we need, of course, some binary and
exponential math. If you are weak in both disciplines and if you are lazy, do not try to understand the
following, pick a floating point library instead. If you really want to know how it works: go on reading, it is
not too complicated to understand.

Allocation of numbers
As has been shown on the previous pages, a 24-bit binary consists of 16 bits for the mantissa and of 8 bits
for the exponent. Both components take their most significant bit as sign. We can easily store these two
components in three bytes, e. g. in three registers of the AVR.

The decimal resolution of such a binary number is 4 1/2 digits. To convert these back to decimal we need
some more space as each digit needs one byte. So we better place the decimal result, together with some
interim numbers that are needed during conversion to the SRAM, so we do not need to mess around with
register needs and shortages. You can also increase the resolution simply by extending the SRAM

../../../9_websites/gsc-da/html/avr-asm/avr_en/beginner/FLOAT/FLOAT2DEC.html

Avr-Asm-Tutorial 61 http://www.avr-asm-tutorial.net

reservation, and the software adds more steps.

15 bits mantissa in binary format corresponds with five decimal digits (215 = 32,768). The format of the
result is as follows:

We need the mantissa's sign bit (if positive we use a blank), the normalized first digit, then the decimal dot,
four significant and one insignificant digits, then the E, the exponent's sign (+ or -) and two exponent digits.
In total we are at 12 bytes result.

So this is the space that should be reserved for the result. To reserve space for that in assembler, we
write:

.dseg

.org SRAM_START
DecAsc:
 .byte 12 ; Reserve 12 bytes for result

The conversion involves adding decimal numbers with

• a resolution of six digits, so we can handle more precision than needed,
• an additional space for three further digits, with which we can do the rounding at the end,
• to the left we add another digit to allow for overflows when multiplying the decimal by two during

conversion of the binary exponent.

So we are at 10-digit numbers for handling the decimal digits. We will need two buffers for that: one for
calculation of the mantissa's value and one to prepare the adders of the mantissa's bits. We add some
space to place those numbers on the beginning of a line in SRAM to ease reading in simulation, but can
leave these reservations aside when space gets scarce. Our SRAM space now looks like this:

.dseg

.org SRAM_START

.equ MantLength = 10
sMant:
 .byte MantLength
sMantEnd:
 .byte 16-MantLength
sAdder:
 .byte MantLength
sAdderEnd:
 .byte 16-MantLength
sDecAsc:
 .byte 12

The two End: labels are for checking if the end has been reached, or, in case we have to start from the
end of the number, to place a pointer right behind the number.

A basic decision is to handle the calculations in simple binary format, where 0 to 9 are handled as binaries
0 to 9. This requires one byte per digit and does not involve the H flag (in case of packed BCD) or the
ASCII format bits when handling ASCII numbers. This is much simpler than in other formats, but needs
slightly more time.

In the first step we init the stackpointer, because we use subroutines.

The second step is to get rid of the mantissa's
sign bit. If bit 7 of the mantissa is zero we can
skip the following. If it is one we subract the LSB
from zero and invert the MSB. This makes a
positive number from the negative. The decimal
mantissa, and also the adder space, with its eight bytes each now look like this.

Converting the mantissa to decimal

Conversion starts with bit 14 of the binary mantissa. As this bit is always a one, we can skip this by setting
the result as well as the adder to 0.50000000. We would formulate this in assembler as follows:

; Initiate the decimal mantissa
InitMant:
 ldi ZH,High(sMant) ; Point Z to mantissa space, MSB
 ldi ZL,Low(sMant) ; dto., LSB
 clr rmp ; Clear the complete mantissa space
 ldi rCnt,MantLength

Avr-Asm-Tutorial 62 http://www.avr-asm-tutorial.net

InitMant1:
 std Z+dAddMant,rmp ; Clear the adder
 st Z+,rmp ; Clear the mantissa
 dec rCnt ; At the end?
 brne InitMant1
 ldi rmp,5 ; Start with bit 15
 sts sMant+2,rmp ; Set start value, Mantissa
 sts sAdder+2,rmp ; and adder
 ret

Note that both buffers are filled simultanously with the use of the STD instruction. At the end the two STS
instructions set the 5 to the right place in both buffers.

The init process has been executed in the simulator avr_sim. Both numbers are set to 0.5 now.

The next step is to divide the decimal adder by two to get
the adder for bit 13. Procedure starts with the 5 in the buffer
and proceeds over the whole buffer length. If the division
by two leaves a remainder (as is already the case with the
first digit 5 / 2 = 2, remainder = 1), 10 has to be added to
the next digit. The division by two is a simple task, as the
whole algorithm goes like this:

; Divide the adder by two
DivideBy2:
 ldi ZH,High(sAdder+1) ; Point to end of the adder, MSB
 ldi ZL,Low(sAdder+1)
 clc ; Clear carry for overflows
 ldi rCnt,MantLength-2 ; Mantissa length minus one to counter
DivideBy2a:
 ld rmp,Z ; Read byte from adder
 brcc DivideBy2b ; Carry is not set, don't add 10
 subi rmp,-10 ; Add ten
DivideBy2b:
 lsr rmp ; Divide by two
 st Z+,rmp ; Store division result
 dec rCnt ; Count down
 brne DivideBy2a
 ld rmp,Z ; Read last byte from adder
 lsr rmp ; Divide by 2
 st Z,rmp
 brcc Divideby2e
 inc rmp ; Round last digit up
Divideby2c:
 st Z,rmp ; Correct last digit
 subi rmp,10 ; Digit > 10?
 brcs DivideBy2e ; Nope
DivideBy2d:
 st Z,rmp ; Correct last digit
 ld rmp,-Z ; Read pre-last digit
 inc rmp ; Increase digit
 st Z,rmp ; and store
 subi rmp,10 ; Check digit >= 10
 brcc DivideBy2d ; Yes, repeat
DivideBy2e:
 ret

These show the simulation of the first two divisions of the adder.

../../../9_websites/gsc-da/html/avr-asm/avr_sim/index_en.html

Avr-Asm-Tutorial 63 http://www.avr-asm-tutorial.net

The special here is to increase the last digit if the division of the last digit shifted a one out to carry. In that
case the last digit (as accessible with ld R16,-Z) has to be increased. If that yields equals or more than ten
(subi R16,10 does not set the carry flag), the overflow has to go back to the previous byte. This has to

be repeated with all previous digits until the INC does not lead to a digit reaching or exceeding 10 any
more.

To the upper right is the next step seen: if the respective mantissa bit is one, the divided adder has to be
added to the decimal mantissa. When adding, the procedure starts at the end of the mantissa and adder
buffer and proceeds to the left of the buffer. Each digit has to be checked if, by adding the adder byte and
the carry, the 10 has been reached or exceeded. If so, ten has to be subtracted and this overflow has to be
added to the next digit.

If the mantissa bit is not one, then the next division takes place without adding. The source code for this is
here:

; Add the adder to the decimal mantissa
MantAdd:
 ldi ZH,High(sMantEnd) ; Point Z to decimal mantissa, MSB
 ldi ZL,Low(sMantEnd) ; dto., LSB
 ldi rCnt,MantLength-1 ; Mantissa length to R16
 clc ; Start with carry clear
MantAdd1:
 ld rmp,-Z ; Read last mantissa byte
 ldd rmp2,Z+dAddMant ; Read corresponding adder byte
 adc rmp,rmp2 ; Add both with carry
 st Z,rmp ; Store in SRAM
 subi rmp,10 ; Subtract 10
 brcs MantAdd2 ; Carry set, smaller than 10
 st Z,rmp ; Overwrite digit
 sec ; Set carry for next digit
 rjmp MantAdd3 ; Count down
MantAdd2:
 clc ; Clear carry for next adding
MantAdd3:
 dec rCnt ; Count down
 brne MantAdd1 ; Not yet complete
 ret
This shows the treatment of all 15 bits of the mantissa: dividing in any case, and adding only if the
mantissa bit is one. Here shown for a mantissa of 0x5555, where every second bit is set one.

Avr-Asm-Tutorial 64 http://www.avr-asm-tutorial.net

Converting
the
exponent
bits
These are the
three
components we
need for handling
the exponent:

1. the mantissa, as derived previously,
2. the decimal exponent, that starts with zero and increases or decreases when applying the binary

exponent, and
3. the binary exponent that is to be applied to the mantissa, that can be between -128 and +127, in

our example it is four.

First of all: the decimal mantissa is not normalized: its first digit is a zero and should be a non-zero number.
The routine Normalize: normalizes this number:

• If the overflow-digit in position 0 is not zero, it shifts the complete number once to the right.
• If the first decimal digit in position 1 is zero, it shifts the complete number one or more positions to

the left.

Each shifting changes the decimal exponent accordingly: shifts to the right increase the exponent while
shifts to the left decrease it.

This shows the first normalization: a shift to the left. Note that the decimal exponent has now become
negative (bit 7 is one).

The source code for normalization:

Avr-Asm-Tutorial 65 http://www.avr-asm-tutorial.net

; Normalize the decimal mantissa
Normalize:
 lds rmp,sMant ; Read mantissa overflow byte
 tst rmp ; Not zero?
 brne NormalizeRight ; Shift to the right
Normalize1:
 lds rmp,sMant+1 ; Read the first digit
 tst rmp ; Zero?
 breq NormalizeLeft ; If yes, shift left
 ret ; No normalization necessary
 ; Shift exponent one position left
NormalizeLeft:
 ldi ZH,High(sMant+1) ; Point to first digit, MSB
 ldi ZL,Low(sMant+1) ; dto., LSB
 ldi rCnt,MantLength-2 ; Shift counter
NormalizeLeft1:
 ldd rmp,Z+1 ; Read the next byte
 st Z+,rmp ; Copy it to the current position
 dec rCnt ; Count down
 brne NormalizeLeft1 ; Additional bytes to move
 clr rmp ; Clear the last digit
 st Z,rmp ; in the last buffer
 dec rDecExp ; Decrease decimal exponent
 rjmp Normalize1 ; Check if further shifts necessary
 ; Shift number to the right
NormalizeRight:
 ldi ZH,High(sMantEnd-1) ; Place Z to the end, MSB
 ldi ZL,Low(sMantEnd-1) ; dto., LSB
 ldi rCnt,MantLength-1 ; Counter for digits
NormalizeRight1:
 ld rmp,-Z ; Read digit left
 std Z+1,rmp ; Store one position to the right
 dec rCnt ; Count down
 brne NormalizeRight1 ; Furchter digits
 clr rmp ; Clear the first digit (overflow digit)
 st Z,rmp
 inc rDecExp ; Increase decimal exponent
 ret

The decimal mantissa has been shifted one position to the left and is now normalized.

As the binary exponent is four, now the mantissa has to be multiplied by two. This decreases the binary
exponent by one.

The source code for multiplication by 2 is the following:

; Multiply number by 2
Multiply2:
 ldi ZH,High(sMantEnd) ; Z to end of mantissa, MSB
 ldi ZL,Low(sMantEnd) ; dto., LSB
 ldi rCnt,MantLength ; Over the complete length
 clc ; No carry on start
Multiply2a:
 ld rmp,-Z ; Read last digit

Avr-Asm-Tutorial 66 http://www.avr-asm-tutorial.net

 rol rmp ; Multiply by 2 and add carry
 st Z,rmp ; Overwrite last digit
 subi rmp,10 ; Subtract 10
 brcs Multiply2b ; Carry set, smaller than 10
 st Z,rmp ; Overwrite last digit
 sec ; Set carry for next higher digit
 rjmp Multiply2c ; To count down
Multiply2b:
 clc ; Clear carry for next higher digit
Multiply2c:
 dec rCnt ; Count down
 brne Multiply2a ; Further digits to process
 ret

This is the simulated multiplication by 2. Note that the overflow byte is at one now, so following each
multiplication a check whether another normalization has to be performed. If so, a right-shift is performed
to normalize the decimal mantissa again.

The same happens if the binary exponent is negative (bit 7 = one). In that case the mantissa has to divided
by two and the normalization check should repair any losses of the first digit, by shifting the mantissa one
or more positions to the left.

These steps are repeated until the binary exponent reaches zero.

Rounding the decimal mantissa

We reserved the three last (insignificant) digits for the repeated shifting in the previous phase, but now we
use them for rounding the result. To do that we add 0.00000555 to our interim result. This should round
these three digits sufficiently.

; Round the mantissa up
RoundUp:
 ldi ZH,High(sMantEnd)
 ldi ZL,Low(sMantEnd)
 ldi rmp2,5
 ldi rCnt,3
 clc
RoundUp1:
 ld rmp,-Z
 adc rmp,rmp2
 st Z,rmp
 subi rmp,10
 brcs RoundUp2
 st Z,rmp
 sec
 rjmp RoundUp3
RoundUp2:
 clc
RoundUp3:
 dec rCnt
 brne RoundUp1
 ldi rmp2,0
 ldi rCnt,MantLength-3
RoundUp4:
 ld rmp,-Z
 adc rmp,rmp2
 st Z,rmp
 subi rmp,10
 brcs RoundUpRet

Avr-Asm-Tutorial 67 http://www.avr-asm-tutorial.net

 dec rCnt
 brne RoundUp4
 rcall Normalize
RoundUpRet:
 ret

Note that, under rare circumstances, rounding can lead to an overflow even to the byte 0. Therefore we
finally have to check if an additional normalization is necessary. This is not the case if the up-rounding
chain ends already in a lower byte position.

With that we have our float now complete for its conversion to ASCII format.

Conversion from BCD to ASCII

All numbers in our decimal are BCDs. We have to add 0x30 (or subtract -'0') to get ASCII characters. Of
course we'll have to add

1. the sign of the decimal mantissa, if it is negative (a blank if otherwise),
2. the decimal dot,
3. if the decimal exponent is not zero, we'll have to add E, the sign of the decimal exponent, and the

exponent in two-digit format. If not we add four blanks.

Execution times
If you are short in time, because your AVR has more urgent things to do than converting floats to decimals:
here are the execution times.

The complete procedure needs roughly the following times:

Mantissa Exponent Duration

0x4000

0x00 448 µs

0x01 668 µs

0x02 816 µs

0x10 2.15 ms

0x7F 23.2 ms

0xFFFF

0x00

449 µs

0x5555 2.88 ms

0x7FFF 3.87 ms

The cases with negative mantissas or exponents are not differing much from the positive cases as there
are only two additional instructions (a NEG and a COM).

If you need the assembler source code (419 lines) for own experiments or extensions to 32/40/48/56/64 bit
floats, here is it: float_conv16.asm.

Faster than above: converting a 40-bit-binary to decimal
This above was not very effective because we used lots of slow SRAM and used a whole byte per decimal
digit. The following shows the more effective way to do conversion of a 40-bit-binary, consisting of 32 bits
mantissa and 8 bits exponent, to a decimal. With the above method this would last at least 50 ms, so we
need a faster method for this.

We do that in the following way:

1. It first converts the 32-bit mantissa to an integer value. Because a 32 bit binary can hold decimal
numbers of up to 4 billion and hence with 10 digits accuracy, we need an integer that can hold up
to five bytes, but as we will have some overflow during multiplications, we use six bytes. For each
of the 32 mantissa bits, the decimal representation of the weight of this bit is added to the result.
Again, like demonstrated above, we start with 0.5, which is decimal 50.000.000.000 or hexadecimal
0B,A4,3B,74,00. These five bytes are repeatedly divided by two to get the next bit's weight factor
as decimal. If the mantissa bit is one, the decimal is added to the result in rAdd5:4:3:2:1:0.

2. The integer is then multiplied with the exponent: each positive exponent multiplies the integer by

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float_conv16.asm

Avr-Asm-Tutorial 68 http://www.avr-asm-tutorial.net

two. If the left-shift shifts a one to byte 6 in rAdd5, the number is divided by 10 and the decimal
exponent is increased by one. If the exponent is negative, the number in rAdd5:4:3:2:1:0 is divided
by two. If rAdd4 gets empty by shifting, the number is multiplied by 10 (*4 by two left shifts, *5 plus
original value, *10 by an additional left shift and the decimal exponent is decreased by one.

3. If follows normalization of the decimal integer: If byte 6 in rAdd5 is not zero, the number is divided
by 10 and the decimal exponent is increased. If the number in rAdd4:3:2:1:0 is larger than or equal
to 1.000.000.000.000 or 0xE8.D4.A5.10.00 (the maximum integer that the following integer-to-
decimal conversion can handle), the number is also divided by 10 and the decimal exponent is
increased. In case that the number did not exceed the maximum, it is checked whether it is smaller
than 100.000.000.000 or 0x17.48.76.E8.00. If that is the case, the number is multiplied by 10 and
the decimal exponent is decreased. That ensures that the first digit is at least a one (normalization
of the decimal).

4. The integer is then converted to a decimal value. This is done by subtracting 100.000.000.000
repeatedly from the integer until an underflow occurs. This leads to the first digit and the decimal
subtractor is added again. The decimal dot then follows. The following digits are derived by
repeatedly subtracting the next lower decade, and down until 10. The last digit is the rest of the
number.

Note that dividing a 6-byte integer by 10 requires
shifting the 48 bits bitwise to the left into another
register. If that gets larger or equal 10, a one is
shifted into the result, if not a zero is shifted. The
division routine is a bit lengthy and consumes lots
of execution time. As this routine is repeatedly
executed if large positive binary exponents have
to be processed, their time consumption is higher
than for all other cases. But: compare these times
with the ones above and consider that we have
doubled the mantissa bits (from 16 to 32).

The table on the right shows the results for
various input combinations.

The source code in assembler format can be downloaded from here. If you like to use it for serious
applications: add another byte to the right to get increased accuracy and reduce the Div10 routine from 48
down to 40 bits in cases where no overflow is in rAdd5 to increase the execution speed.

Conclusion
Keep away from those fractional numbers. They eat your performance and blow up your code with, in most
cases, completely unneeded trash.

Floating point arithmetic in assembly language

Converting decimals to binary floating point numbers in assembler
language
Following the introduction to binary floating point numbers and the conversion of binary floats to decimal
format we need the opposite of the last: the conversion of decimals to float. And that goes like this.

Decimal number formats

There are lots of different decimal number formats:

• 1 or 123: decimal fixed integers without decimal dot,

• 12.3: decimal floating point numbers with decimal dots,

• -1.234: negative decimal floating point numbers with decimal dot,

• 1.2345E2, 1.2345E+2, 1.2345E+02: decimal floating point numbers with one or two decimal
exponents, and with or without "+",

• 1.23456E-12: decimal floating point numbers with negative decimal exponents,

• -1.234567E-13: negative decimal floating point numbers with negative decimal exponent.

To convert all these formats of decimals to binary floating point numbers, the software has to:

1. check whether the decimal is negative (the string starts with "-"),
2. convert the unsigned decimal mantissa to a binary number format,
3. get the decimal exponent (number of decimal digits before the decimal dot plus the number of

digits after the decimal dot plus the negative or positive number following "", if any) and to multiply
(positive exponent) or divide (negative exponent) the binary mantissa, including any changes to the
binary exponent, if necessary,

4. normalize the binary mantissa (highest mantissa bit = 1), and to
5. invert the mantissa's sign bit and it's content if the input number is negative.

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float40_b2d_fast.asm

Avr-Asm-Tutorial 69 http://www.avr-asm-tutorial.net

The assembler software for the conversion

The assembler source code here has the decimal number to be converted to a binary float as a string with
ASCII-formatted characters in its flash memory, together with the conversion code. This string is copied to
a location in SRAM first. This step is necessary to avoid multiple mixed accesses to the flash later on. If
your decimal is already located in the SRAM (e.g. because you received it via serial communication) you
can skip this step. Only ensure that the decimal ends with a null byte at the end (null-terminated string).

The software is written for binary mantissas of up to 40 bit length and uses an 8-bit binary exponent. That
corresponds to a 48-bit binary float. Those who need less accuracy can remove the last or the two last
bytes and save some execution time with that.

Detecting the negative sign

By default a positive sign is assumed. The pointer X (XH:XL = R27:R26) points to the beginning of the
string and reads the first ASCII character. If that is a minus character, the flag bMneg is set. The
procedure later on uses this flag to format the mantissa as negative.

Read the decimal mantissa and convert it to a binary integer

The software then starts reading the decimal mantissa. This is written for english format (decimal dot), but
this is ignored in this stage. The null terminator 0x00 or a "E" character ends reading the decimal mantissa.
Other characters than ASCII-Zero to ASCII-Nine lead to a jump to the error loop routine. In that case
register R16 holds an ASCII character that characterizes the reason for the failure:

• "0": Character smaller than ASCII-zero,
• "9": Character larger than ASCII-nine,
• "E": Exponent larger than +/-39,
• "b": Binary exponent smaller than -128,
• "B": Binary exponent larger than 127.

The digits read are, starting with 10,000,000,000 (0x02540BE400), multiplied (by repeated addition to the
result) and added. The next digit reads the next lower decimal as hex. This is repeated until either the
string ends or an "E" ocuurs or the decimal reaches zero (all other characters following are ignored). To
read the decimals from a table in flash memory avoids to divide the number by 10 and accelerates
execution.

Calculate the binary mantissa

To convert the binary integer that was read in to a binary mantissa, all mantissa bits are first cleared. Only
the least significant bit in thje mantissa is set, which signals that all 40 bits have been converted.

Starting with the decimal 1,000,000,000,000 (0xE8D4A51000) this decimal is repeatedly divided by two.
The integer is then compared with this divided number. If the integer is equal or larger than the divided
decimal, the decimal is subtracted and a one is shifted into the result registers. If not, a zero is shifted into
the result registers. If, after shifting, a zero is shifted out the division by two and the comparison is
repeated. If a one is shifted out, the conversion of 40 bits is complete.

Determine the decimal exponent and convert it

Now the decimal exponent is determined. First the position of the decimal dot is searched for in the string:
any digit left to the dot increases the decimal exponent. Then the "E" is searched for. If the string ends
without this character, the decimal exponent is already correct. If not, the maximal two decimal digits are
read, converted to a binary byte and this is either added (if the exponent sign is missing or "+" or is
subtracted, if negative (flag bEneg is set).

Now the decimal exponent is checked if it is larger than 40 or smaller than -40. If so, the error loop is
executed.

If the decimal exponent is positive (bit 7 of rDExp is clear), the mantissa is multiplied by 10. This is

performed in a subroutine named Mult10:. To do this it is first checked if the most significant byte of the

mantissa (rR4) reaches or exceeds 25. If that is the case, the mantissa is shifted right and the binary
exponent is increased. The mantissa is then copied, rotated to the left two times, then the copy is added
and another shift left is performed. This multiplication is repeated as often as the decimal exponent says.

If the decimal exponent is negative, the mantissa is divided by 10, as often as the decimal exponent says.
Division by 10 can be done in two ways, both are included in the source code following the label Div10:.
Just change the respective switch either to zero or one. The first type of division by 10 is to shift out the 40
bits one by one and to subtract 10 from the shifted-out bits. If no carry occurs, a one is shifted into the
result registers. If a carry occurred, the subtraction of the 10 is undone and a zero is shifted in.

The second version of dividing by 10 needs a little bit more source lines, but performs faster. The
accelerated mode copies the previous mantissa, adds five to the mantissa, then the copy is repeatedly
divided by two. The first, the second and the third divided copies are subtracted from the uprounded
mantissa, the fourth and fifth are not subtracted. Then the following two divided copies are subtracted and
the next following two are not subtracted. The dividing and subtracting ends when the divided copy is
empty.

To switch to the accelerated div10 version is useful if many divisions by 10 have to be performed (in case
of a negative decimal exponent). In case of 1E-30 the classical div10 method needs 24.55 ms, the
accelerated method only 14 ms, and so is nearly double as fast.

http://www.avr-asm-tutorial.net/avr_en/beginner/FLOAT/float40_d2b.asm

Avr-Asm-Tutorial 70 http://www.avr-asm-tutorial.net

The accelerated method is further described here for divisions by N and here for 10 only.

Normalization and sign processing

Finally the binary mantissa is normalized. It is either shifted to the right (if bit 39 is set) or is shifted left as
long as bit 38 of the mantissa is not one. Of course shifting decreases or increases the binary exponent
accordingly.

Those who need normalization with an extra mantissa bit, shift the mantissa left until bit 39 is one and then
clear bit 39. This shifts the most significant bit out and adds one bit to the mantissa.

Finally: if the flag rDneg is set, the complete mantissa, including the sign bit 39, is inverted.

After all these operations the result binary mantissa is in rR4:rR3:rR2:rR1:rR0, the binary exponent in

rBExp and all is completed.

Results

The table to the right shows
results of such conversions from
decimal to binary for selected
cases. Displayed is the decimal
number, its binary mantissa and
exponent, the result of the
conversion of the back to decimal
format, as well as the execution
times needed. In all cases the
accelerated DIV10 method has
been switched on.

As can be seen, the re-converted numbers differ in the fifth or sixth decimal digit. So is 0.12345651
incorrect for the second "5" in the seventh digit, which would round up falsely to the sixth digit. This is as
expected because with 40 bits LOG2(40) is little more than 5. If you need it more accurate, use a 56 or 64
bit mantissa instead. The method is the same, the extensions are pretty small.

Conclusion

Those who want to send the controller into deep bit shifting and away from the relevant things that also can
happen in the controller's life, use floating point conversion. Conversion of a decimal to a 40-bit float can
replace delay routines of around 10 ms. If you need maximum delay, then let your controller convert 1E-36
and switch the accelerated method off.

Have much fun with playing with this software.

http://www.avr-asm-tutorial.net/avr_en/beginner/DIV10/DIV10.html
http://www.avr-asm-tutorial.net/avr_en/beginner/DIVN/DIVN.html

Avr-Asm-Tutorial 71 http://www.avr-asm-tutorial.net

Address modes in AVRs
Here you find all about accessing locations in assembler in AVRs.

Accessing SRAM, registers and port registers
The first thing to learn when accessing memory
types in AVRs is that there are two types of
addressing:

1. Physical addresses, and
2. Pointer addresses.

Both are in most cases not identical. In case of
SRAM, the two address types have the following
values (see the diagram):

• The physical address of the SRAM starts
with 0x0000. If the device has 1 kB
SRAM, its physical address ends at
0x03FF.

• The pointer address starts at an address
SRAM_START, which is defined in a
constant in the def.inc-file. In devices that
have no extended port registers this is the
address 0x0060, in other cases 0x0100 or
even higher.

Note that when accessing SRAM you'll never use
the physical address of this memory space, only
and exclusively the pointer address. This is a
major difference to accessing port registers,
where you can use both address types.

Consequently, if you switch the assembler to the
data segment using the .dseg directive, its
address pointer starts at SRAM_START (in many
cases 0x0060, in other cases beyond that address). How can you find out that address? Now, either you
search the def.inc file for that address or, more convenient, you use gavrasm as assembler or use the
avr_sim simulator. Place the following lines into your source code:

.nolist

.include "m324PBdef.inc" ; Define device ATmega324PB

.list

.dseg
TheFirstSramLocation:
.cseg

After assembling with gavrasm, with the -s option active, or with avr_sim you'll see in the symbol table
within the lower section of the listing that the label placed behind the .dseg directive: the pointer address of
the first SRAM location is
in that case 0x0100. If you
would have selected an
ATtiny13 (with .include
"tn13def.inc" in the second
line), you would get a
different value.

If you'll need the constant RAMEND: just use .equ my_ramend = RAMEND to get the value of

RAMEND into the symbol list. To remove the directive .NOLIST from the source code is not
recommended as it flows your attention with hundreds of information lines that you are not really interested
in.

If you are working with avr_sim, you can also use the feature "View" and "Symbols" and filter the list with
the term "RAMEND".

Accessing SRAM locations with fixed addresses
SRAM can have a physical size of up to 32,768 bytes. As the pointer address is always higher, the

http://www.avr-asm-tutorial.net/avr_sim/index_en.html
http://www.avr-asm-tutorial.net/gavrasm/index_en.html

Avr-Asm-Tutorial 72 http://www.avr-asm-tutorial.net

addresses to be handled are therefore 16 bits wide (and not just 15 bits).

Such locations can be addressed directly using the instructions STS 16-bit-address,register or LDS
register,16-bit-address. Register can be any register between R0 and R31. The 16-bit-address
can be any 16-bit wide fixed number.

The following code writes 0xAA (or binary 0b10101010) to the first physical SRAM location. This is also
written to the 15th byte in SRAM. To demonstrate the usefulness of the pointer addressing, we also write
this byte to registers R0 and R15:

.dseg
FirstSramLocation: ; Place a label to this address
;
.cseg
 ldi R16,0xAA
 sts FirstSramLocation,R16 ; Write to first SRAM location
 sts FirstSramLocation+15,R16 ; Write to SRAM 15 bytes later
 sts 0,R16 ; Write to register R0
 sts 15,R16 ; Write to register R15

To the left, the two bytes written to SRAM can be seen. To the
right the two bytes written to those registers can be seen.

If we would have to read from these locations we would use the following:

 lds R16,FirstSramLocation ; Read from first SRAM location
 lds R17,FirstSramLocation+15 ; Read from SRAM 15 bytes later
 lds R18,0 ; Read from register R0
 lds R19,15 ; Read from register R15

If you want your controller to waste some time: lds R16,16 or sts 16,R16 are wonderful operations.

Note that all four locations use fixed addresses. Those addresses are added to the STS instruction word
0x9300, as can be seen from the assembler listing, so that a double-word instruction is resulting.

Accessing SRAM location with pointers
To access areas of locations we'll need to address dynamically, in registers. AVRs can handle 16 bit wide
addresses in three double registers or so-called register pairs):

• X = XH:XL = R27:R26,
• Y = YH:YL = R29:R28,
• Z = ZH:ZL = R31:R30.

To point double register X to the first
SRAM location we use the two following
instructions:

.dseg
FirstSramLocation: ; Place a label to this address
.cseg
 ldi XH,High(FirstSramLocation) ; Set the MSB of the address

Avr-Asm-Tutorial 73 http://www.avr-asm-tutorial.net

 ldi XL,Low(FirstSramLocation) ; Set the LSB of the address

The address is now in X. To write 0xAA to this address we add the following:

 ldi R16,0xAA ; Write AA to register R16
 st X,R16 ; and to the first SRAM location

Now, that is not very advanced. It is still only one byte to write. But we'll see how we can use the pointer for
more.

Accessing SRAM location with increasing pointers
Now we can easily fill the first 16 bytes of SRAM with the 0xAA by using a loop that increases that
address:

.dseg
FirstSramLocation: ; Place a label to this address
.cseg
 ldi XH,High(FirstSramLocation) ; Set the MSB of the address
 ldi XL,Low(FirstSramLocation) ; Set the LSB of the address
 ldi R16,0xAA ; Write AA to register R16
FillLoop:
 st X+,R16 ; and to the SRAM location and increase the address
 cpi XL,Low(FirstSramLocation+16) ; Check if end of fill area
 brne FillLoop

This shows the initiation stage:

• The pointer register X (in R27:R26) has been set to the address of the first SRAM location. MSB
and LSB are set.

• The register R16 is set to 0xAA.

The first step has been executed, ST has written the content of register R16 to the first SRAM location.
The plus behind X auto-increases the address right after writing the register to the location in X. It replaces
two instructions:

1. ST X,R16, plus

2. ADIW XL,1,

but consumes only two clock cycles instead of four. That is called Auto-Increment.

The last step is to check whether X already points to outside of our row. The first location outside our row
is LastLocationPlus1:. Note that this only works for area lengthes of up to 256 bytes, because we
check only the LSB of the address byte. An alternative way, to be able to fill any desired length of SRAM
with that constant, would be:

Avr-Asm-Tutorial 74 http://www.avr-asm-tutorial.net

.dseg
FirstSramLocation: ; Place a label to this address
 .byte 16 ; Define length of area
LastSramLocationPlus1:
;
.cseg
 ldi XH,High(FirstSramLocation) ; Set the MSB of the address
 ldi XL,Low(FirstSramLocation) ; Set the LSB of the address
 ldi R16,0xAA ; Write AA to register R16
FillLoop:
 st X+,R16 ; and to the SRAM location and increase the address
 cpi XH,High(LastSramLocationPlus1) ; Check MSB
 brne FillLoop
 cpi XL,Low(LastSramLocationPlus1) ; Check if end of fill area
 brne FillLoop

Now: whatever length is defined in the SRAM segment, we'll write our constant to that complete area.

Accessing SRAM location with decreasing pointers
Increasing pointers and repeated read/write allow very fast and effective programs. But what if we need
decreasing?

As a somewhat weird example: we want to copy an SRAM area to a different area in a reversed row, so
that the text in one area appears reversed in another area.

First we have to create a text pattern in a first area. Like this:

.dseg
 Textarea:
 .byte 16
 TextareaEnd:
.cseg
 ldi XH,High(Textarea)
 ldi XL,Low(Textarea)
 ldi R16,'a'
FillLoop:
 st X+,R16
 inc R16
 cpi XL,Low(TextareaEnd)
 brne FillLoop

That produces the pattern here. In the initiation step the pointer X is set to the beginning of the text area,
R16 is set to the ASCII character 'a'. In a loop then this character is written to SRAM, Y is auto-
incremented and R16 is also incremented, which produces a 'b', and so on.

Now we'd like to reverse that. Of course we need a second pointer for this, e.g. Y. The first character, that
the pointer X points to at the beginning, the "a", goes to the last position of the second area. The next
character goes one position left to that, so we have to decrease the second pointer. If you think, that
possibly an Y- would be sufficient to avoid a pointer decrease with SBIW YL,1, you are on a good

assumption, but the assembler complains: ST Y-,R16 is not a valid instruction:

This is the error message of the
assembler when trying to use ST
X-,R16: the minus is valid on the left

Avr-Asm-Tutorial 75 http://www.avr-asm-tutorial.net

of Y, not to the right of it. This has a serious consequence: the minus is executed first, before storing. And:
the pointer Y starts one position to the right, after the last used target byte.

This here is the complete source code for reversed copying.

.dseg
 Textarea:
 .byte 16
 TextareaEnd:
 .org 0x0080 ; Leave some space in between
 Textreverse:
 .byte 16
 TextreverseEnd:
.cseg
 ldi XH,High(Textarea)
 ldi XL,Low(Textarea)
 ldi R16,'a'
FillLoop:
 st X+,R16
 inc R16
 cpi XL,Low(TextareaEnd)
 brne FillLoop
 ldi XH,High(Textarea)
 ldi XL,Low(Textarea)
 ldi YH,High(TextreverseEnd)
 ldi YL,Low(TextreverseEnd)
CopyLoop:
 ld R16,X+
 st -Y,R16
 cpi XL,Low(TextareaEnd)
 brne CopyLoop

The first part works like filling with a
constant, but here we increase the
characters in R16 from 'a' to 'p'.

The X-pointer is then set to point to the
beginning of that area. Then we add
pointer Y, which points at the end of the
reversed text area, plus 1.

In a loop, first the next character from
the text area is read. Of course, with an
auto-increment.

Avr-Asm-Tutorial 76 http://www.avr-asm-tutorial.net

The character that was read to R16 is
then copied to the reverse text area using
the pointer Y. But this is done only after
decreasing the pointer address with -Y.

These two steps, read and write, are
repeated in the copy loop. The loop ends
if

• either the X pointer points to the
end of the text area,

• or the Y pointer points to the
beginning of the reverse text area.

That was a quick reverse copy. All address manipulation of the two pointers use the Auto-Increment- and
Auto-Decrement-features of the AVRs, no fuzzy and time-consuming ADIW or SBIW necessary. All with
the built-in instruction set of the AVRs. But there are even more addressing modes in AVRs.

Accessing SRAM locations with displacement addressing
AVRs have an additional addressing mode that temporarily adds a displacement to a pointer. This is also
called indirect mode. Only Y and Z are capable for that, not the X register pair.

The two instructions doing that are STD Y/Z+d,register and LDD register,Y/Z+d. d is a constant
between 1 and 63. It is only added temporarily, Y or Z are not changed at all. So this instruction replaces
the following sequence (here for Y):

 adiw YL,d ; Add displacement d to Y
 st Y,R16 ; store R16 on displaced location
 sbiw YL,d ; Subtract displacement d from Y

The difference between the STD and this sequence is that STD does not affect any SREG flags. And it
requires only two clock cycles instead of six.

STD and LDD are useful in
cases where you'll have to
access byte rows in respect to a
fixed address: access to
displaced bytes is eased. An
example for this.

Your ADC has up to eight
channels, each channel has its
own sum where all measuring
results are summed up, its own
multiplier, its multiplication
result, its own compare values,
its own jump address, etc.

This record of max. 64 bytes
each has to be treated as a
whole, e.g. the multiplication
routine for all eight channels
exists only once and is called with Y or Z pointing to the current channel.

To access the data bytes in this structure, e.g. summing up a 10-bit measuring result in R1:R0, the sum
value can be accessed as follows:

 ld R16,Y ; Read the LSB of the sum
 add R16,R0 ; Add the LSB
 st Y,R16 ; Store the LSB
 ldd R16,Y+1 ; Read the MSB of the sum with displacement
 adc R16,R1 ; Add the MSB
 std Y+1,R16 ; Store the MSB with displacement

The only thing you need is to set Y to the channel's record address. Because all LD/ST and LDD/STD do
not affect SREG the ADC of the MSB can use the carry flag. With ADIW or SDIW in between, that wouldn't
be possible.

The advantage of the use of displacement access via Y or Z is that any of the necessary routines accesses
one of the eight channel's record. Only the Y pointer's address decides which one of the channels is
manipulated.

Avr-Asm-Tutorial 77 http://www.avr-asm-tutorial.net

But the displacement access can be useful in many other cases. Here a simple example. Let us assume
we have filled an area with characters, such as here.

.dseg
TextLocation: ; Place a label to this address
 .byte 27
TextLocationEnd:
 .byte 1
TextLocationEndPlusOne:
;
.cseg
 ldi YH,High(TextLocation) ; Set the MSB of the address
 ldi YL,Low(TextLocation) ; Set the LSB of the address
 ldi R16,'A' ; Write character A to register R16
FillLoop:
 st Y+,R16 ; and to the SRAM location, auto-increase the address
 inc R16
 cpi YL,Low(TextLocationEnd) ; Check if end of fill area
 brne FillLoop

Now let us assume further that we need space for an additional character at the start of that string, but we
want to keep the original. That means we extend this text by one SRAM location and add the additional
character at the beginning.

This is the filling process, like already
seen in the examples above.

In that case it is clear that
we'll have to start from the
end of the string, the 'Z': only
if we shift the 'Z' one position
to the right, we'll have space
to shift the next character, the
'Y', also one position to the
right.

We see that the last fill operation already ends with the Y pointer pointing to right behind the 'Z'. We
already know how to read the 'Z': just with LD R16,-Z. That decreases the address in Y by one and then
reads the 'Z'.

But we'll have to write the 'Z' now to the next higher address. We can do that by increasing Y with ADIW
YL,1 first, then write the character and then going back with SBIW YL,1. As the character is by one location
to the left, we can go back by two. That would lead to the following down-up-and-down-orgy:

 sbiw YL,1 ; 2 clock cycles
Loop:
 ld R16,Y ; +2 = 4 clock cycles
 adiw YL,1 ; +2 = 6 clock cycles
 st Y,R16 ; +2 = 8 clock cycles
 sbiw YL,2 ; +2 = 10 clock cycles
 ; check end of loop here
 brne Loop

Avr-Asm-Tutorial 78 http://www.avr-asm-tutorial.net

A much more elegant solution uses the
"Decrease before reading" feature of AVR
addressing: LD R16,-Y first decreases
the pointer and reads the byte from the
already decreased address. This replaces
the SBIW plus the LD and packs it into
one instruction. By that it decreases
execution from four clock cycles down to
two.

The two steps which then increases the
pointer again and writes the character
there, can be replaced by another
intelligent AVR address mode: STD
Y+1,R16. This adds temporarily a one
to Y and writes the character there. As
the one is only temporarily added, Y
remains the same after the instruction
has executed. No further address manipulation is necessary.

With these two addressing tricks we come to the following optimal code for that string shifting:

ShiftLoop:
 ld R16,-Y ; 2 clock cycles
 std Y+1,R16 ; +2 = 4 clock cycles
 cpi YL,Low(TextLocation) ; +1 = 5 clock cycles
 brne ShiftLoop ; +1 or +2 = 6/7 clock cycles
 ldi R16,'@'
 st Y,R16

Now, that is really amazing: no pointer corrections in between: no ADIWs or SBIWs, anything in fast, two
cycle long instructions. 153 µs for shifting 28 characters at 1.2 MHz clock in an ATtiny13.

And: more than double as fast than with address manipulation. So if your PIC does not know auto-
decrement and displacement access, it needs double as long as an AVR. And: that makes a clock cycle
increase in an ATtiny13 with the factor of two, without increasing its power consumption at all.

Conclusion: if your program goes far beyond a blink routine in respect to complexity, think about such
advanced instruction capabilities. It makes your code more elegant, executes faster, is much more
effective and, if associated with enough comments, it reads simpler.

Accessing port registers
Again, we have to be aware of the two address types here:

1. Physical addresses, and
2. Pointer addresses.

Reading from and Writing to port registers use both address types,
which can confuse the beginner.

Accessing classical port registers
This type of access uses the two instructions OUT outport,register
to write and IN register,inport to read the content on those
locations. The address type used here are the physical addresses.

Access with OUT and IN is limited to the 64 classical port registers. The
extended port registers are not accessible with those two instructions
(see below on how accessing those works).

If you need to set or clear only one of the bits in a port location, you can

Avr-Asm-Tutorial 79 http://www.avr-asm-tutorial.net

use the SBI port,bit for setting or CBI port,bit for clearing the bit. These instructions replace the
following instructions:

 in R16,port ; Read the port
 ; Setting
 sbr R16,1<<bit ; Setting the bit, or:
 ori R16,1<<bit ; alternative for setting the bit in the register
 ; Clearing
 cbr R16,1<<bit ; Clearing the bit, or:
 andi R16,256-1<<bit ; alternative for clearing the bit in the register
 out port,R16 ; Write to the port

While this (longer) method can be used on all 64 port registers, the SBI and CBI works for the lower half of
the port registers only.

SBI and CBI require two clock cycles, while the alternative single step method requires three and an
additional register.

Toggling a single bit in a port can be done by EXOR-ing the port with a register that has the bit(s) set that
are to be toggled:

 in R16,port ; Read the port
 ldi R17,1<<bit ; The port bit to be toggled, or
 ldi R17,(1<<bit1)|(1<<bit2) ; two bits to be toggled
 eor R16,R17 ; Exclusive or
 out port,R16 ; Write the toggled port

If the port to be toggled is an I/O port, you can, in most modern AVR devices, alternatively write to the I/O's
input port to toggle one or more of the bits. This toggles the bits 1 and 3 of the I/O port PORTA:

 ldi R16,(1<<1)|(1<<3)
 out PINA,R16

Access to extended port registers
If the OUT to a port register is ending with the assembler error message that the port is out of range, this
port is in the extended port register range beyond physical address 0x3F. That is the case in larger ATtiny
or ATmega devices, where 64 port registers did not provide enough address space.

In that case, you'll have to use the pointer address and either the instruction STS or ST to write the data to
this port. In that case the address given in the def.inc has already added the 0x20 and is a pointer address,
so that you can simply replace the OUT with STS (or an IN with LDS) to that location.

Of course, the SBI/CBI and the SBIC/SBIS instructions cannot be used for these extended port registers.
That is why port registers, that require to be changed with a smaller probability are placed into the
exptended port register area.

Access with pointers, example: the circular LED light
Now let us assume you need a 32-bit light row, where one of the 32 LEDs is pointing towards the next
emergency exit. As the whole cycle has to be one second long, a frequency of 32 Hz increases the LED
and each LED has to be on for 21.25 ms.

This requires a controller with four complete 8-bit-I/O-ports. The excerpt from
avr_sim's device select window shows all those AVR devices. We can use one of
those, such as the ATmega324PA.

This is the hardware needed. Looks pretty simple, many resistors and LEDs. If we
are sure, that the software will switch only one LED of all 32 at a time on, we can
reduce the number of resistors down to one and connect all cathodes with that single
resistor. If the number of LEDs on is one in each 8-bit-port we can reduce the
number of resistors down to four by connecting all LED cathodes in one 8-bit-port to
one resistor.

The first step in software, to make all I/O direction bits output and to set PORTA's bit
0 to one and all others to zero, can be done with or without pointers. The version
without pointer would be:

 ldi R16,0xFF ; All bits as output
 out DDRA,R16
 out DDRB,R16
 out DDRC,R16
 out DDRD,R16

Avr-Asm-Tutorial 80 http://www.avr-asm-tutorial.net

 clr R16 ; All upper
24 bits clear
 out PORTD,R16
 out PORTC,R16
 out PORTB,R16
 ldi R16,0x01 ;
Lowest bit set
 out PORTA,R16

These are the register ports controlling
I/O ports in an ATmega324PA. All
addresses form a row of three register
ports: PIN, DDR and PORT. The
physical as well as the pointer
addresses increase by one. So, with a
pointer base address of 0x20 in Y or Z,
those register ports can be accessed
with displacements of 0, 3, 6 and 9 for
the PIN of the I/O port, with 1, 4 and 7
the DDR I/O ports are displaced and
with 2, 5 and 8 the PORT I/O ports are
displaced. If you wonder what is meant
with the term "displacement", see the
chapter on displacement in SRAM.

The version with a pointer would use
these displacements and would look like this:

 ldi R16,0xFF ; All bits as output
 ldi YH,High(PINA+0x20) ; Point Y to PINA's pointer address
 ldi YL,Low(PINA+0x20)
 std Y+1,R16 ; Access the DDR port registers
 std Y+4,R16
 std Y+7,R16
 std Y+10,R16
 clr R16 ; The upper 24 bits clear
 std Y+5,R16 ; Access the PORT port registers
 std Y+8,R16
 std Y+11,R16
 ldi R16,0x01 ; The lowest bit set
 std Y+2,R16

Now, that is clearly less efficient, because each STD access consumes two clock cycles instead of one for
an OUT. So we would prefer the classical OUT method over the pointer method in that case.

But now, let's write an interrupt service routine for the compare match interrupt of a timer that controls the
speed of our LED row. Quick and dirty this would be like:

Tc0CmpIsr: ; 7 clock cycles for int+rjmp
 in R16,PORTA ; +1 = 8
 lsl R16 ; +1 = 9
 out PORTA,R16 ; +1 = 10
 in R16,PORTB ; +1 = 11
 rol R16 ; +1 = 12
 out PORTB,R16 ; +1 = 13
 in R16,PORTC ; +1 = 14
 rol R16 ; +1 = 15
 out PORTC,R16 ; +1 = 16
 in R16,PORTD ; +1 = 17
 rol R16 ; +1 = 18
 out PORTD,R16 ; +1 = 19
 brcc Tc0CmpIsrReti ; +1/2 = 20/21
 in R16,PORTA ; +1 = 21

Avr-Asm-Tutorial 81 http://www.avr-asm-tutorial.net

 rol R16 ; +1 = 22
 out PORTA,R16 ; +1 = 23
Tc0CmpIsrReti: ; 21/23 cycles
 reti ; +4 = 25/27 cycles
 ; Total cycles: 31 * 25 + 27 = 802 cycles

The given clock cycles are for each interrupt. 31 times the interrupt does not require the restart, consuming
25 clock cycles each, once a restart is necessary and consumes 27 cycles. This sums up to 802 cycles in
total. Together with 32 wake-ups from sleep and 64 cycles for jumping back to sleep, we are
approximately at 866 cycles in one second. At 1 MHz clock, that makes a sleep time share of 99.13%.

But: Three of the four OUT instructions are superfluous, because the active LED is not in that I/O port. So
writing only the one port with the currently active LED would be sufficient.

In those rare cases, where the active LED changes the I/O port (every eight's shift), both the old port as
well as the next port has to be written. That brings us to a different algorithm, this time with pointers. First
the initialization:

 ldi XH,High(PORTA+0x20) ; Pointer address to X, +1 = 1
 ldi XL,Low(PORTA+0x20) ; dto. LSB, +1 = 2
 ldi rShift,0x01 ; Start shift register, +1 = 3
 st X,rShift ; Write this to PORTA, +2 = 5

As these five cycles are to be performed only once during init, we don't really count them. And the interrupt
service routine with the moving pointer would be like this:

OC0AIsr: ; 7 cycles for int+rjmp
 lsl rShift ; +1 = 8
 st X,rShift ; +2 = 9
 brcc Tc0CmpIsrReti ; +1/2 = 10/11
 ; Next I/O port
 adiw XL,3 ; Point to next channel, +2 = 12
 cpi XL,Low(PORTD+3+0x20) ; +1 = 13
 brne Tc0CmpIsr1 ; +1/2 = 14/15
 ldi XH,High(PORTA+0x20) ; +1 = 16
 ldi XL,Low(PORTA+0x20) ; +1 = 17
Tc0CmpIsr1: ; 15/17 cycles
 ; Restart from the beginning
 ldi rShift,0x01 ; Set bit 0, +1 = 16/18
 st X,rShift ; +2 = 18/20
Tc0CmpIsrReti: ; 11/18/20
 reti ; +4 = 15/22/24
 ; Total cycles: = 28*15 + 3*22 + 1*24 = 510

The number of cycles is slightly more than half of the classical method without pointers. This is a clear
indicator that the method with the moving pointer is nearly double as efficient, simply because it doesn't
waste time on unnecessary INs and OUTs. That increases the sleep share to 99.43% and also reduces the
current consumption of the controller, so that the emergency power supply lasts longer.

Now consider that we connect the LED's cathodes to the I/O pins and the resistor(s) to plus. There are only
a few changes that have to be made in the software: CLR rShift turns to SER rShift, LDI rShift,0x01
turns to LDI rShift,0xFE and brcc Tc0CmpIsrReti turns to brcs Tc0CmpIsrReti. These changes
concern the initiation of the I/O ports as well as the interrupt service routine. A little more tricky is that the
lsl rShift in the ISR has to shift a one in, e.g. with sec and rol rShift instead of lsl rShift. Now the
software is ready to pull-down the LEDs to GND instead of driving current into the output pins.

The assembler software for this can be downloaded from here. It allows to increase or reduce the circle
time between 50 and 2000 milliseconds as well as to select anodes and cathodes connected to the I/O
pins (see the adjustable constants on top of the source code).

What if we want to switch more than one LED on? If you allow four LEDs to be on in each LED cycle step,
the software is rather simple: just output the register rShift to each of the four I/O ports, without the use of
pointers. If you want two LEDs to be on at a time (e.g. L1 and L16, L2 and L17, etc.), the algorithm requires
pointers and is a little bit more tricky, because the restart of the two pointers, back to PORTA, happens in
two different port phases. If eight LEDs shall be on in each phase, consider taking the shift state from a
table in flash memory (see the chapter on adressing flash) rather than with LSL or ROL. If more than these
LEDs simultanously on, you might run into current limits of the device: the ATmega324PA can drive only
200 mA via its VCC and GND pins. So make sure that your LED currents do not exceed this limit (e.g. with
16 LEDs on - every second LED - drive those with a maximum current of 12.5 mA per LED, with all LEDs
on only 6.25 mA per LED are allowed).

http://www.avr-asm-tutorial.net/avr_en/beginner/addressing/32bit_flowlight.asm

Avr-Asm-Tutorial 82 http://www.avr-asm-tutorial.net

Conclusion:

If your program does require the same operation with ports over and over again, you should consider
programming those ports with an algorithm. In many cases this is more efficient than doing all the same all
over again and wasting typing and assemble time instead of a more intelligent approach.

Accessing EEPROM
All AVRs have at least 64 bytes and up to 4,096 bytes EEPROM on board. EEPROM is a memory type
that keeps its content, even if the power supply of the device is down and, after a short or long period of
time, is powered up again.

Un-programmed EEPROM space contains all 0xFF. The content of the EEPROM can be written in two
modes:

1. When assembling source code, anything that was written in the .ESEG section of the source code,
is copied into a hex file named *.eep. The file's content can be programmed into the EEPROM
using a burner software.

2. Within the actively executed program, EEPROM locations can be cleared and re-written with
different content. The procedure to clear and re-write a byte requires some time, the end of the
write process can initiate an interrupt, if so enabled.

Reading from EEPROM requires a different procedure. Reading EEPROM content is fast and requires
only a few clock cycles.

EEPROM initiation with the .ESEG directive
If you use EEPROM you might want to set the initial EEPROM content on the first controller start-up to
certain values. This requires a .ESEG directive. The following places different content into the EEPROM.

.CSEG ; Code segment
JumpAddress:
 ; Instructions to be executed
;
.ESEG
.ORG 0x0000 ; The start address of the EEPROM content, default=0
 .db 1,2,3,4,'A','a' ; Bytes to be written
 .dw 1234, 4567 ; 16-bit Words to be written
 .db "Text to be written to EEPROM",0x00 ; Text string
 .dw JumpAddress
; End of the ESEG
;
.CSEG ; Code segment
; ... Further code for execution

After assembling and programming the .eep file to the controller, its EEPROM looks like shown in the
picture.

Normally programming the flash memory not only erases the flash but erases the EEPROM content as
well. If you want to keep the EEPROM content during programming the flash, set the respective preserve
fuse of the device. That prevents from erasing the flash. And: if that fuse is set, do not write the .eep file
again to the EEPROM. It will fail verification in most of the cases, because zeros in the EEPROM can not
be overwritten by ones (only erasing produces ones).

EEPROM port registers
Writing or reading EEPROM uses three or four port registers:

Avr-Asm-Tutorial 83 http://www.avr-asm-tutorial.net

1. An address: The lowest 8 bit
of the address are to be written
to the port register EEARL. If
the device has more than 256
bytes EEPROM, the most
significant 8 bits of the address
are to be written to port register
EEARH.

2. A data port: When writing to
the EEPROM the 8 bit data to
be written are written to the
data port register EEDR, before the write process is started. When reading from EEPROM, the

data at the addressed location is appearing in port register EEDR.

3. A control port: Write to or read access from the EEPROM is controlled in the control register

EECR by manipulating bits in this register. When writing, the EEPE-Bit is one, when reading the

EERE-bit is one.

Please note that the addresses given are subject to changes, so always use the def.inc names instead of
fixed addresses.

Writing the EEPROM address
If your program shall read or write a single byte to/from the EEPROM, the assembler code to set the
address should look like this:

.equ EepromAddress = 0x0010
;
; First wait until any write procedure has finished
WaitEep:
 sbic EECR,EEPE ; Check EEPE byte
 rjmp WaitEep ; Wait further
;
; Set the address
 ldi R16,Low(EepromAddress)
 out EEARL,R16
 .ifdef EEARH ; If more than 256 bytes EEPROM
 ldi R16,High(EepromAddress)
 out EEARH,R16
 .endif
 ; Read or write procedure
 ReadWriteEep:
 ; Read or write procedure here

Note that changing the EEPROM address ALWAYS should check first that no programming is in progress.
These are the first two words, before any settings can be made.

The .IFDEF directive adds the MSB setting only if the symbol EEARH is defined in the def.inc file, which is
the case for all AVRs that have more than 256 bytes EEPROM.

If you want to read or write multiple EEPROM locations in a row, you'll have to set the LSB of the address
in a loop, and, if the MSB changes, the MSB as well. As the check whether programming is finished has to
be made prior to entering any address changes and as the MSB has to be set in any case (if the MSB is
physically available), we cannot limit the MSB output only to cases where the MSB changes. Here, we
output the MSB in all cases, which are only two additional instructions.

.equ EepStartAddr = 0x0010

.equ EepEndAddr = 0x001F
 ; Set the address to the double register in R1:R0
 ldi R16,High(EepStartAddr)
 mov R1,R16
 ldi R16,Low(EepStartAddr)
 mov R0,R16
EepLoop:
 sbic EECR,EEPE
 rjmp EepLoop
 ; Output the LSB of the address
 out EEARL,R0
 .ifdef EEARH
 ; Output the MSB of the address
 out EEARH,R1
 .endif
EepReadWriteProcedure:
 ; Add Read or write procedure here

Avr-Asm-Tutorial 84 http://www.avr-asm-tutorial.net

 inc R0 ; Increase LSB
 brne EepChkEnd
 inc R1
EepChkEnd:
 ldi R16,Low(EepEndAddr+1)
 cp R0,R16
 brne EepLoop
 ldi R16,High(EepEndAddr+1)
 brne EepLoop

Reading from the EEPROM
Reading from the EEPROM is initiated by setting the EERE-bit in the control register EECR. This halts the

CPU for four clock cycles and then writes the EEPROM content at that address to port register EEDR.
That looks like this:

.equ EepAddrs = 0x0010
EepWait:
 sbic EECR,EEPE ; Wait until write operation finished
 rjmp EepWait
 ldi R16,Low(EepAddrs)
 out EEARL,R16
 .ifdef EEARH
 ldi R16,High(EepAddrs)
 out EEARH,R16
 .endif
 sbi EECR,1<<EERE
 ; Four clock cycles pause
 in R16,EEDR ; Read byte to R16

In case we have to read more than one byte, we have to have more storage space. If a second byte is to
be read, we'll need a second register. If more than three or four bytes are to be read, we use an SRAM
space to write the bytes there, e.g. with a pointer to that in X, we would add the instruction ST X+,R16.

This here shows how we read the complete EEPROM content into an area in SRAM by using ST
X+,R16. Note that the whole process needed close to one millisecond, because of delays during access
reads, the check of the programming bit, the double byte check of the end and the pointer operations.

Write access to the EEPROM
To avoid unplanned write access to the EEPROM, the procedure to start a write process is a bit more
complicated:

1. First check if the last write is finished by testing the EEPE bit in the control register EECR.
Otherwise wait.

2. Then write the correct address to EEARL/EEARH.

3. Then write the data byte to be written to EEDR.

4. Then set the Master Programming Enable bit EEMPE in EECR, together with the programming

mode bits EEPM0 (Erase only) and EEPM1 (Write only), if so desired, and the interrupt enable

EEPIE-bit, if desired.
5. Within the following four clock cycles (make sure that no interrupt can occur during these four

cycles) set the Programming Enable bit EEPE in EECR.

This starts the programming of the location after two clock cycles.

Avr-Asm-Tutorial 85 http://www.avr-asm-tutorial.net

The programming of the byte lasts 3.4 ms. When finished, the EEPE-bit is cleared and, if so enabled,
starts an interrupt and jumps to the EEPROM-READY vector.

An example: This text in the SRAM has to be copied to EEPROM. We can do that preferably with the
interrupt feature of EEPROM write or in a discrete loop that checks whether the EEPE-bit is clear and
writes the next character in SRAM to the EEPROM.

This is the state of the EEPROM after few characters have been written and the 16th character is currently
written. In the first half of the write process the location is erased, which means that all bits at that location
are set to one. In the second half, the data is written. As this lasts roughly 3.4 ms, the bar shows the
progress. Both, the master write/program enable bit EEMPE and the write/program enable bit EEPE are
active (high). When the write process is finished, both bits are cleared by the AVR.

As the whole process lasts more than 140 ms, it is not recommended to perform EEPROM writes in this
lengthy way. This was just an example.

One note on interrupts: if the interrupt-enable-bit EEIE is set, the EEPROM READY interrupt re-triggers

every time the EEPE-bit gets clear and if no other higher-ranking interrupt is active. Your whole program
can be blocked by this, if you do not write the next byte to the EEPROM in your interrupt service routine. If
no more bytes are to be written, clear the interrupt enable bit.

Finally a warning: the number of write operations to EEPROM is limited to several thousand events. One
day has over 80,000 seconds, a year has more than 31 million seconds, so if you want to reach the
guaranteed number of write accesses in one year, you can write the same EEPROM location every
3,100 seconds or every 53 minutes.

So do not unnecessarily re-write the EEPROM and limit write accesses to several minutes or hours and do
it whenever really needed (e.g. because the user just pressed a key or because the controller has re-
started). It is a good idea to hold a copy of the EEPROM content in registers or SRAM and to only re-write
the EEPROM if the difference is large enough.

An example for this: if you want to keep the current state of a stepper motor in two, three of four bytes in an
EEPROM location, do not write the position changes to EEPROM whenever one single step has been
made. Write the status only after the complete move has finished. And write only the really changed bytes
to EEPROM. And hope that the LSB of the EEPROM lasts long enough.

Conclusions:
Read accesses from EEPROM are very fast, but less fast than SRAM read accesses or accesses to
registers. So better read the needed EEPROM content once to a location in SRAM and access this instead
of the EEPROM.

Write accesses to EEPROM require longer times, are limited over the life-time of the device and should be
limited to the cases where they are useful and really needed. Depending from the rest of your program and

Avr-Asm-Tutorial 86 http://www.avr-asm-tutorial.net

from its overall timing considerations: better use the EEPROM READY interrupt to avoid timing conflicts.

Flash memory accesses
All AVRs have a memory, called flash memory, that holds the executable program. As the executable
instructions in AVRs have 16 bits, the memory is 16 bit wide (in words, not in bytes).

The size of the flash memory can be anything between 512 words and up to 393,216 words. The
addresses are therefore between 0x01FF and 0x05FFFF. In most cases the constant FlashEnd from the
def.inc file provides the last or highest address.

The address 0x00000 is special because it is the starting address: after power-up, a reset or a watchdog-
reset the instruction word in address 0x000000 is the first that is executed.

The .CSEG directive
Assembling a source code writes all executable instructions and tables to the code segment CSEG by
default. When switching the assembler either to the SRAM segment with the directive .DSEG or to the

EEPROM segment with the directive .ESEG, the return back to the code segment can be dore with the

directive .CSEG.

All code that has been assembled is written by the assembler to the .hex file. Its content can be written to
the flash memory with the programmer soft- and hardware.

Instructions such as NOP write 16-bit words to the .hex file. Words with 16 bits can be written with the

directive .DW 16-bit-value at any location within the flash.

Bytes can be assembled and written to the .hex file with the .DB 8-bit-value. When writing one single 8-
bit-value, the upper significant byte MSB is always written to zero. When writing two 8-bit-constants within
one .DB 8-bit-value-1, 8-bit-value_2 directive, the first value is written to the LSB, the second value
to the MSB at the current location.

The assembler source code to the left is
assembled, the results of the assembling can be
viewed in the assembler listing below.

• The NOP in line 20 of the source code,
which is a valid instruction, has been
translated to an address of 0x000000 and
an executable hex code of 0x0000. That
hex code will be written to the hex file.

Avr-Asm-Tutorial 87 http://www.avr-asm-tutorial.net

• The ADD R16,R16 in line 21 has been translated to the executable hex code 0x0F00 at address
0x000001.

• The following line has not been translated, because it is only a label and meaningful for the
assembler only.

• The RJMP loop has been translated to 0xCFFF at address 0x000002, an executable that jumps
back to where it just came from (an indefinite loop.

• The first .DB 1 has been translated to 0x0001 at address 0x000003, but the assembler complains
with a warning, that the number of bytes in the .DB line is odd, and that he has added a 0x00 as
MSB at address 0x000003.

• The second .DB 1,2 has been translated to 0x0201 at address 0x000004. Note that the first byte
0x01 is now the LSB of the resulting word in flash while the second byte 0x02 is the MSB of that
word.

• The third .DB 1,2,3 has been splitted into two words: 1 and 2 go to the first word, 3 goes to the
second word, and the assembler warns again.

• The line .DB "A text string" is translated to seven words in a row: as can be seen from the
second character in the string, a blank or 0x20, every second character goes to the MSB and every
first character to the LSB. Again, the assembler complains that the number of bytes in the line is
odd.

• No such complaints in all lines with .DW: all words fit into the 16 bits of the flash memory. The last

entry, .DW Loop inserts the address of the label Loop: into the flash memory at that address
0x000014. We will later on read that address location to jump to such a label.

The LPM instruction
The instruction LPM or Load
from Program Memory reads one
byte from the flash. It takes the
flash address from the register
pair Z (ZH:ZL = R31:R30) and
transfers the result to register R0.

But: each address in flash
memory has two bytes, an LSB
and an MSB. Which of the two bytes are to be read, and how to get the second byte at that same address?

Avr-Asm-Tutorial 88 http://www.avr-asm-tutorial.net

The trick to do that is to shift the flash address left by one location and to add a zero or a one to the right of
the address in bit 0 of Z. A zero to the right addresses the LSB, a one the MSB.

One disadvantage does the trick have: bit 15 of the flash address cannot be used. So better place your
lengthy tables with thousands of values into the lower half of your 64k words wide flash.

The following formulations in assembler are all the same and set Z to access the LSB and the MSB of the
byte table below:

.equ FlashAddr = ByteTable ; Set the flash address
 ; Formulation 1
 ldi ZH,High(FlashAddr+FlashAddr+0) ; Access the LSB, MSB of Z
 ldi ZL,Low(FlashAddr+FlashAddr+0) ; dto., LSB of Z
 lpm
 ldi ZH,High(FlashAddr+FlashAddr+1) ; Access the MSB, MSB of Z
 ldi ZL,Low(FlashAddr+FlashAddr+1) ; dto., LSB of Z
 lpm
 ;
 ; Formulation 2
 ldi ZH,High(2*FlashAddr+0) ; Access the LSB, MSB of Z
 ldi ZL,Low(2*FlashAddr+0) ; dto., LSB of Z
 lpm
 ldi ZH,High(2*FlashAddr+1) ; Access the MSB, MSB of Z
 ldi ZL,Low(2*FlashAddr+1) ; dto., LSB of Z
 lpm
 ;
 ; Formulation 3
 ldi ZH,High((FlashAddr<<1)|0) ; Access the LSB, MSB of Z
 ldi ZL,Low((FlashAddr<<1)|0) ; dto., LSB of Z
 lpm
 ldi ZH,High((FlashAddr<<1)|1) ; Access the MSB, MSB of Z
 ldi ZL,Low((FlashAddr<<1)|1) ; dto., LSB of Z
 lpm
Loop:
 rjmp Loop
;
ByteTable:
 .db 1
 .db 1,2
 .db 1,2,3
 .db "This is a text string"

Of course, you do not have to define an extra constant
named FlashAddr but you can directly use the label
ByteTable: as address in the LDI instructions. And all
the +0 and |0 in the formulations are also superfluous
because they have no effect.

So, whatever you prefer, it is all the same. The result is
always in R0, as the simulated instruction shows. What
the simulation also shows is that one access of the
flash memory costs three cycles (the LDI are one cycle
each). Flash memory therefore is a little bit slower than
SRAM and much slower than registers.

Advanced LPM instructions
ATMEL later added the opportunity to use any register as target, the formulation of those instruction are
lpm register,Z, where register can be any of the 32 registers.

Also a little bit later the auto-increment was implemented. This increases the address in Z after the load
has been performed. The effect is that the two instructions lpm and adiw ZL,1 are replaced by the

instruction lpm register,Z+. Note that this additional step does not increase the access time.

The opposite, the auto-decrease to read tables from the end down to the beginning, was also
implemented. Like in the case of SRAM auto-decrement, the decrementation is done prior to the load
access. The formulation is lpm register,-Z and replaces sbiw ZL,1 and lpm. This additional
decrementation does not change access time.

Use examples for LPM
The first example uses LPM to copy a null-terminated text from flash memory to SRAM.

Avr-Asm-Tutorial 89 http://www.avr-asm-tutorial.net

; Prepare data segment labels
.dseg
sText:
;
.cseg
 ; Point Z to flash in memory
 ldi ZH,High(2*Text)
 ldi ZL,Low(2*Text)
 ; Point X to SRAM target location
 ldi XH,High(sText)
 ldi XL,Low(sText)
CopyText:
 lpm R16,Z+ ; Load from program memory
 st X+,R16 ; Store in SRAM
 tst R16 ; Null termination?
 brne CopyText ; No, go on
; Do'nt run into table
Loop:
 rjmp Loop
; Prepare the text in flash memory
Text:
 .db "This text to be copied to SRAM.",0x00

The whole operation lasts 259 µs.

The second example is a little bit academic. Guess that your program needs to react to an event with 10
different subroutines, that are of an unequal length: some short ones, some long ones. That can be the
case if the user presses one out of ten keys. You can now check whether the initial event was zero, one,
two, etc. and up to nine and you can call the ten different subroutines.

Faster and more elegant is it to

• place these ten subroutine addresses into a table,
• to calculate the table address from the given number,
• to read the table entry with LPM, and
• to call the subroutine with ICALL.

What you win here is that you are flexible in extending or reducing the number of subroutines, you are
flexible to place them to any address you like, etc.

This is the source code.

; Prepare data segment labels
.dseg
sText:
;
.cseg
 ; Point Z to flash in memory
 ldi ZH,High(2*Text)
 ldi ZL,Low(2*Text)
 ldi XH,High(sText)
 ldi XL,Low(sText)
CopyText:
 lpm R16,Z+
 st X+,R16
 tst R16
 brne CopyText
; Icall part
.equ select = 0
 ldi R16,Low(RAMEND)
 out SPL,R16
 .ifdef SPH
 ldi R16,High(RAMEND)
 out SPH,R16
 .endif
 ldi R16,select ; Load selected routine number here
 lsl R16 ; Multiply by two
 ldi ZH,High(2*JmpTable) ; Point Z to table
 ldi ZL,Low(2*JmpTable)
 add ZL,R16 ; Add the doubled selection number

Avr-Asm-Tutorial 90 http://www.avr-asm-tutorial.net

 ldi R16,0 ; Add carry, if any
 adc ZH,R16
 lpm R16,Z+ ; Read LSB
 lpm ZH,Z ; Read MSB
 mov ZL,R16 ; Copy LSB to ZL
 icall ; Call the routine in Z
Loop:
 rjmp Loop
;
; Routine 0
Routine0:
 nop
 ret
Routine1:
 nop
 nop
 ret
Routine2:
 nop
 nop
 nop
 ret
Routine3:
 nop
 nop
 nop
 nop
 ret
Routine4:
 nop
 nop
 nop
 nop
 nop
 ret
Routine5:
 nop
 nop
 nop
 nop
 nop
 nop
 ret
;
; Jump table
JmpTable:
 .dw Routine0,Routine1,Routine2
 .dw Routine3,Routine4,Routine5
 ; Add additional routines here

The simulation has been started with
select=0, the table address of this selection
has been calculated in Z by adding the left-
shifted select to the table's starting
address. The address in Z points to the
LSB of the first table entry.

0x0033 is the first entry.

Now the jump address has been read from
the table and prepared for an ICALL in Z.

Avr-Asm-Tutorial 91 http://www.avr-asm-tutorial.net

The ICALL has called the Routine0.

With all different possible selects this jumps to
the correct routine.

Conclusion:
LPM and its more modern variations offer a
wide variety of opportunities to handle texts
and to access smaller or larger tables in the
large flash memory. Effective programming
very often involves such loads from program
flash.

Avr-Asm-Tutorial 92 http://www.avr-asm-tutorial.net

Annex

Instructions sorted by function
For the abbreviations used see the list of abbreviations.

Function Sub function instruction Flags Clk

Register
set

0 CLR r1 Z N V 1

255 SER rh 1

Constant LDI rh,c255 1

Copy

Register => Register MOV r1,r2 1

SRAM => Register, direct LDS r1,c65535 2

SRAM => Register LD r1,rp 2

SRAM => Register and INC LD r1,rp+ 2

DEC, SRAM => Register LD r1,-rp 2

SRAM, displaced => Register LDD r1,ry+k63 2

Port => Register IN r1,p1 1

Stack => Register POP r1 2

Program storage Z => R0 LPM 3

Register => SRAM, direct STS c65535,r1 2

Register => SRAM ST rp,r1 2

Register => SRAM and INC ST rp+,r1 2

DEC, Register => SRAM ST -rp,r1 2

Register => SRAM, displaced STD ry+k63,r1 2

Register => Port OUT p1,r1 1

Register => Stack PUSH r1 2

Add

8 Bit, +1 INC r1 Z N V 1

8 Bit ADD r1,r2 Z C N V H 1

8 Bit + Carry ADC r1,r2 Z C N V H 1

16 Bit, constant ADIW rd,k63 Z C N V S 2

Subtract

8 Bit, -1 DEC r1 Z N V 1

8 Bit SUB r1,r2 Z C N V H 1

8 Bit, constant SUBI rh,c255 Z C N V H 1

8 Bit - Carry SBC r1,r2 Z C N V H 1

8 Bit - Carry, constant SBCI rh,c255 Z C N V H 1

16 Bit SBIW rd,k63 Z C N V S 2

Shift

logic, left LSL r1 Z C N V 1

logic, right LSR r1 Z C N V 1

Rotate, left over Carry ROL r1 Z C N V 1

Rotate, right over Carry ROR r1 Z C N V 1

Arithmetic, right ASR r1 Z C N V 1

Nibble exchange SWAP r1 1

Binary

And AND r1,r2 Z N V 1

And, constant ANDI rh,c255 Z N V 1

Or OR r1,r2 Z N V 1

Or, constant ORI rh,c255 Z N V 1

Exclusive-Or EOR r1,r2 Z N V 1

Ones-complement COM r1 Z C N V 1

Twos-complement NEG r1 Z C N V H 1

Bits
change

Register, set SBR rh,c255 Z N V 1

Register, clear CBR rh,255 Z N V 1

html/avr_en/beginner/REGISTER.html#CBR
html/avr_en/beginner/REGISTER.html#SBR
html/avr_en/beginner/CALC.html#ComNeg
html/avr_en/beginner/CALC.html#ComNeg
html/avr_en/beginner/CALC.html#Eor
html/avr_en/beginner/CALC.html#Ori
html/avr_en/beginner/CALC.html#Or
html/avr_en/beginner/REGISTER.html#ANDI
html/avr_en/beginner/CALC.html#And
html/avr_en/beginner/CALC.html#Swap
html/avr_en/beginner/CALC.html#Asr
html/avr_en/beginner/CALC.html#Ror
html/avr_en/beginner/CALC.html#Rol
html/avr_en/beginner/CALC.html#Lsr
html/avr_en/beginner/CALC.html#Lsl
html/avr_en/beginner/REGISTER.html#ASIW
html/avr_en/beginner/REGISTER.html#SBCI
html/avr_en/beginner/CALC.html#SubSbc
html/avr_en/beginner/REGISTER.html#SUBI
html/avr_en/beginner/CALC.html#SubSbc
html/avr_en/beginner/JUMP.html#DEC
html/avr_en/beginner/REGISTER.html#ASIW
html/avr_en/beginner/CALC.html#AddAdc
html/avr_en/beginner/CALC.html#AddAdc
html/avr_en/beginner/JUMP.html#Inc
html/avr_en/beginner/SRAM.html#PushPop
html/avr_en/beginner/REGISTER.html#OUT
html/avr_en/beginner/SRAM.html#StdLdd
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/SRAM.html#STSLDS
html/avr_en/beginner/REGISTER.html#LPM
html/avr_en/beginner/SRAM.html#PushPop
html/avr_en/beginner/PORTS.html#IN
html/avr_en/beginner/SRAM.html#StdLdd
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/REGISTER.html#LDSI
html/avr_en/beginner/SRAM.html#STSLDS
html/avr_en/beginner/REGISTER.html#MOV
html/avr_en/beginner/REGISTER.html#LDI
html/avr_en/beginner/REGISTER.html#SER
html/avr_en/beginner/REGISTER.html#CLR

Avr-Asm-Tutorial 93 http://www.avr-asm-tutorial.net

Function Sub function instruction Flags Clk

Register, copy to T-Flag BST r1,b7 T 1

Register, copy from T-Flag BLD r1,b7 1

Port, set SBI pl,b7 2

Port, clear CBI pl,b7 2

Status bit
set

Zero-Flag SEZ Z 1

Carry Flag SEC C 1

Negative Flag SEN N 1

Twos complement carry Flag SEV V 1

Half carry Flag SEH H 1

Signed Flag SES S 1

Transfer Flag SET T 1

Interrupt Enable Flag SEI I 1

Status bit
clear

Zero-Flag CLZ Z 1

Carry Flag CLC C 1

Negative Flag CLN N 1

Twos complement carry Flag CLV V 1

Half carry Flag CLH H 1

Signed Flag CLS S 1

Transfer Flag CLT T 1

Interrupt Enable Flag CLI I 1

Compare

Register, Register CP r1,r2 Z C N V H 1

Register, Register + Carry CPC r1,r2 Z C N V H 1

Register, constant CPI rh,c255 Z C N V H 1

Register, ≤0 TST r1 Z N V 1

Immediate
Jump

Relative RJMP c4096 2

Indirect, Address in Z IJMP 2

Subroutine, relative RCALL c4096 3

Subroutine, Address in Z ICALL 3

Return from Subroutine RET 4

Return from Interrupt RETI I 4

Conditional
Jump

Status bit set BRBS b7,c127 1/2

Status bit clear BRBC b7,c127 1/2

Jump if equal BREQ c127 1/2

Jump if not equal BRNE c127 1/2

Jump if carry set BRCS c127 1/2

Jump if carry clear BRCC c127 1/2

Jump if equal or greater BRSH c127 1/2

Jump if lower BRLO c127 1/2

Jump if negative BRMI c127 1/2

Jump if positive BRPL c127 1/2

Jump if greater or equal (Signed) BRGE c127 1/2

Jump if lower than zero (Signed) BRLT c127 1/2

Jump on half carry set BRHS c127 1/2

Jump if half carry clear BRHC c127 1/2

Jump if T-Flag set BRTS c127 1/2

Jump if T-Flag clear BRTC c127 1/2

Jump if Twos complement carry set BRVS c127 1/2

Jump if Twos complement carry clear BRVC c127 1/2

html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brne
html/avr_en/beginner/JUMP.html#Breq
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Reti
html/avr_en/beginner/JUMP.html#Ret
html/avr_en/beginner/JUMP.html#IjmpIcall
html/avr_en/beginner/JUMP.html#Rcall
html/avr_en/beginner/JUMP.html#IjmpIcall
html/avr_en/beginner/JUMP.html#Rjmp
html/avr_en/beginner/CALC.html#Tst
html/avr_en/beginner/REGISTER.html#CPI
html/avr_en/beginner/CALC.html#CpCpc
html/avr_en/beginner/CALC.html#CpCpc
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PDETAIL.html#SREG
html/avr_en/beginner/PORTS.html#CBISBI
html/avr_en/beginner/PORTS.html#CBISBI
html/avr_en/beginner/CALC.html#Bld
html/avr_en/beginner/CALC.html#CltSetBst

Avr-Asm-Tutorial 94 http://www.avr-asm-tutorial.net

Function Sub function instruction Flags Clk

Jump if Interrupts enabled BRIE c127 1/2

Jump if Interrupts disabled BRID c127 1/2

Conditioned
Jumps

Register bit=0 SBRC r1,b7 1/2/3

Register bit=1 SBRS r1,b7 1/2/3

Port bit=0 SBIC pl,b7 1/2/3

Port bit=1 SBIS pl,b7 1/2/3

Compare, jump if equal CPSE r1,r2 1/2/3

Others

No Operation NOP 1

Sleep SLEEP 1

Watchdog Reset WDR 1

Directives and Instruction lists in alphabetic order

Assembler directives in alphabetic order

Directive ... means ...

.CSEG Assemble to the Code segment

.DB Insert data byte(s)

.DEF Define a register name

.DW Insert data word(s)

.ENDMACRO Macro is complete, stop recording

.ESEG Assemble to the EEPROM segment

.EQU Define a constant by name and set its value

.INCLUDE Insert a file's content at this place as if it would be part of this file

.MACRO Start to record the following instructions as a macro definition

.ORG Set the assembler output address to the following number

html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#CsegOrg
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/PORTS.html#SLEEP
html/avr_en/beginner/JUMP.html#NOP
html/avr_en/beginner/JUMP.html#Cpse
html/avr_en/beginner/JUMP.html#SBICS
html/avr_en/beginner/JUMP.html#SBICS
html/avr_en/beginner/JUMP.html#SBRCS
html/avr_en/beginner/JUMP.html#SBRCS
html/avr_en/beginner/JUMP.html#Brxx
html/avr_en/beginner/JUMP.html#Brxx

Avr-Asm-Tutorial 95 http://www.avr-asm-tutorial.net

Instructions in alphabetic order

Instruction ... performs ...

ADC r1,r2 Add r2 with Carry to r1 and store result in r1

ADD r1,r2 Add r2 to r1 and store result in r1

ADIW rd,k63 Add the immediate word constant k63 to the double register rd+1:rd (rd = R24, R26, R28, R30)

AND r1,r2 And bit wise r1 with the value in r2 and store the result in r1

ANDI rh,c255 And bit wise the upper register rh with the constant c255 and store the result in rh

ASR r1 Arithmetic shift the register r1 right

BLD r1,b7 Copy the T-flag in the status register to bit b7 in register r1

BRCC c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRCS c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is set

BREQ c127 Branch by c127 instructions for- or backwards if the zero flag in the status register is set

BRGE c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRHC c127 Branch by c127 instructions for- or backwards if the half carry flag in the status register is clear

BRHS c127 Branch by c127 instructions for- or backwards if the half carry flag in the status register is set

BRID c127 Branch by c127 instructions for- or backwards if the interrupt flag in the status register is clear

BRIE c127 Branch by c127 instructions for- or backwards if the interrupt flag in the status register is set

BRLO c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is set

BRLT c127 Branch by c127 instructions for- or backwards if the negative and overflow flag in the status register are
set

BRMI c127 Branch by c127 instructions for- or backwards if the negative flag in the status register is set

BRNE c127 Branch by c127 instructions for or backwards if the zero flag in the status register is set

BRPL c127 Branch by c127 instructions for- or backwards if the negative flag in the status register is clear

BRSH c127 Branch by c127 instructions for- or backwards if the carry flag in the status register is clear

BRTC c127 Branch by c127 instructions for- or backwards if the transfer flag in the status register is clear

BRTS c127 Branch by c127 instructions for- or backwards if the transfer flag in the status register is set

BRVC c127 Branch by c127 instructions for- or backwards if the overflow flag in the status register is clear

BRVS c127 Branch by c127 instructions for- or backwards if the overflow flag in the status register is set

BST r1,b7 Copy the bit b7 in register r1 to the transfer flag in the status register

CBI pl,b7 Clear bit b7 in the lower port pl

CBR rh,k255 Clear all the bits in the upper register rh, that are set in the constant k255 (mask)

CLC Clear the carry bit in the status register

CLH Clear the half carry bit in the status register

CLI Clear the interrupt bit in the status register, disable interrupt execution

CLN Clear the negative bit in the status register

CLR r1 Clear the register r1

CLS Clear the signed flag in the status register

CLT Clear the transfer flag in the status register

CLV Clear the overflow flag in the status register

CLZ Clear the zero flag in the status register

COM r1 Complement register r1 (ones complement)

CP r1,r2 Compare register r1 with register r2

CPC r1,r2 Compare register r1 with register r2 and the carry flag

CPI rh,c255 Compare the upper register rh with the immediate constant c255

CPSE r1,r2 Compare r1 with r2 and jump over the next instruction if equal

DEC r1 Decrement register r1 by 1

EOR r1,r2 Exclusive bit wise Or register r1 with register r2 and store result in r1

ICALL Call the subroutine at the address in register pair Z (ZH:ZL, R31:R30)

IJMP IN r1,p1 Jump to the address in register pair Z (ZH:ZL, R31:R30)

INC r1 Increment register r1 by 1

LD r1,(rp,rp+,-rp) Load the register r1 with the content at the location that register pair rp (X, Y or Z) points to (rp+
increments the register pair after loading, -rp decrements the register pair prior to loading)

LDD r1,ry+k63 Load the register r1 with the content at the location that register pair ry (Y or Z), displaced by the
constant k63, points to

LDI rh,c255 Load the upper register rh with the constant c255

html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial 96 http://www.avr-asm-tutorial.net

LDS r1,c65535 Load register r1 with the content at location c65535

LPM
LPM r1
LPM r1,Z+
LPM r1,-Z

Load register R0 with the content of the flash memory at the location that register pair Z (ZH:ZL,
R31:R30), divided by 2, points to, bit 0 in Z points to lower (0) or upper (1) byte in flash (Load register
r1, Z+ increment Z after loading, -Z decrement Z prior to loading)

LSL r1 Logical shift left register r1

LSR r1 Logical shift right register r1

MOV r1,r2 Move register r2 to register r1

NEG r1 Subtract register r1 from Zero

NOP No operation

OR r1,r2 Bit wise or register r1 with register r2 and store result in register r1

ORI rh,c255 Bit wise or the upper register r1 with the constant c255

OUT p1,r1 Copy register r1 to I/O port p1

POP r1 Increase the stack pointer and pop the last byte on stack to register r1

PUSH r1 Push register r1 to the stack and decrease the stack pointer

RCALL c4096 Push program counter on stack and add signed constant c4096 to the program counter (relative call)

RET Pop program counter from stack (return to call address)

RETI Enable interrupts and pop program counter from stack (return from interrupt)

RJMP c4096 Relative jump, add signed constant c4096 to program address

ROL r1 Rotate register r1 left, copy carry flag to bit 0

ROR r1 Rotate register r1 right, copy carry flag to bit 7

SBC r1,r2 Subtract r2 and the carry flag from register r1 and write result to r1

SBCI rh,c255 Subtract constant c255 and carry flag from the upper register rh and write result to rh

SBI pl,b7 Set bit b7 in the lower port pl

SBIC pl,b7 If bit b7 in the lower port pl is clear, jump over the next instruction

SBIS pl,b7 If bit b7 in the lower port pl is set, jump over the next instruction

SBIW rd,k63 Subtract the constant k63 from the register pair rd (rd+1:rd, rd = R24, R26, R28, R30)

SBR rh,c255 Set the bits in the upper register rh, that are one in constant c255

SBRC r1,b7 If bit b7 in register r1 is clear, jump over next instruction

SBRS r1,b7 If bit b7 in register r1 is set, jump over next instruction

SEC Set carry flag in status register

SEH Set half carry flag in status register

SEI Set interrupt flag in status register, enable interrupt execution

SEN Set negative flag in status register

SER rh Set all bits in the upper register rh

SES Set sign flag in status register

SET Set transfer flag in status register

SEV Set overflow flag in status register

SEZ Set zero flag in status register

SLEEP Put controller to the selected sleep mode

ST (rp/rp+/-rp),r1 Store content in register r1 to the memory location in register pair rp (rp = X, Y, Z; rp+: increment
register pair after store; -rp: decrement register pair prior to store)

STD ry+k63,r1 Store the content of register r1 at the location that register pair ry (Y or Z), displaced by the constant
k63, points to

STS c65535,r1 Store the content of register r1 at the location c65535

SUB r1,r2 Subtract register r2 from register r1 and write result to r1

SUBI rh,c255 Subtract the constant c255 from the upper register rh

SWAP r1 Exchange upper and lower nibble in register r1

TST r1 Compare register r1 with Zero

WDR Watchdog reset

html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr
html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial 97 http://www.avr-asm-tutorial.net

Port details
The table of the relevant ports in the ATMEL AVR types AT90S2313, 2323 and 8515. Byte wise accessible
ports or register pairs are not displayed in detail. No warranty for correctness, see the original data sheets!

Status-Register, Accumulator flags

Port Function Port-Address RAM-Address

SREG Status Register Accumulator 0x3F 0x5F

7 6 5 4 3 2 1 0

I T H S V N Z C

Bit Name Meaning Opportunities Conmmand

7 I Global Interrupt Flag
0: Interrupts disabled CLI

1: Interrupts enabled SEI

6 T Bit storage
0: Stored bit is 0 CLT

1: Stored bit is 1 SET

5 H Halfcarry-Flag
0: No halfcarry occurred CLH

1: Halfcarry occurred SEH

4 S Sign-Flag
0: Sign positive CLS

1: Sign negative SES

3 V Two's complement-Flag
0: No carry occurred CLV

1: Carry occurred SEV

2 N Negative-Flag
0: Result was not negative/smaller CLN

1: Result was negative/smaller SEN

1 Z Zero-Flag
0: Result was not zero/unequal CLZ

1: Result was zero/equal SEZ

0 C Carry-Flag
0: No carry occurred CLC

1: Carry occurred SEC

Stackpointer

Port Function Port-Address RAM-Address

SPL/
SPH

Stackpointer 003D/0x3E 0x5D/0x5E

Name Meaning Availability

SPL
Low-Byte of Stack
pointer

From AT90S2313 upwards, not in 1200

SPH
High-Byte of Stack
pointer

From AT90S8515 upwards, only in devices with >256 bytes internal SRAM

SRAM and External Interrupt control

Port Function Port-Address RAM-Address

MCUCR MCU General Control Register 0x35 0x55

7 6 5 4 3 2 1 0

SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

Bit Name Meaning Opportunities

7 SRE Ext. SRAM Enable
0=No external SRAM connected

1=External SRAM connected

Avr-Asm-Tutorial 98 http://www.avr-asm-tutorial.net

Bit Name Meaning Opportunities

6 SRW Ext. SRAM Wait States
0=No extra wait state on external SRAM

1=Additional wait state on external SRAM

5 SE Sleep Enable
0=Ignore SLEEP instructions

1=SLEEP on instruction

4 SM Sleep Mode
0=Idle Mode (Half sleep)

1=Power Down Mode (Full sleep)

3 ISC11

2 ISC10
Interrupt control Pin INT1
(connected to GIMSK)

00: Low-level initiates Interrupt

01: Undefined

10: Falling edge triggers interrupt

11: Rising edge triggers interrupt

1 ISC01

0 ISC00
Interrupt control Pin INT0
(connected to GIMSK)

00: Low-level initiates interrupt

01: Undefined

10: Falling edge triggers interrupt

11: Rising edge triggers interrupt

External Interrupt Control

Port Function Port-Address RAM-Address

GIMSK General Interrupt Maskregister 0x3B 0x5B

7 6 5 4 3 2 1 0

INT1 INT0 - - - - - -

Bit Name Meaning Opportunities

7 INT1
Interrupt by external pin INT1
(connected to mode in MCUCR)

0: External INT1 disabled

1: External INT1 enabled

6 INT0
Interrupt by external Pin INT0
(connected to mode in MCUCR)

0: External INT0 disabled

1: External INT0 enabled

0...5 (Not used)

Port Function Port-Address RAM-Address

GIFR General Interrupt Flag Register 0x3A 0x5A

7 6 5 4 3 2 1 0

INTF1 INTF0 - - - - - -

Bit Name Meaning Opportunities

7 INTF1 Interrupt by external pin INT1 occurred Automatic clear by execution of the Int-Routine or
Clear by instruction6 INTF0 Interrupt by external pin INT0 occurred

0...5 (Not used)

Timer Interrupt Control

Port Function Port-Address RAM-Address

TIMSK Timer Interrupt Maskregister 0x39 0x59

7 6 5 4 3 2 1 0

TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -

Avr-Asm-Tutorial 99 http://www.avr-asm-tutorial.net

Bit Name Meaning Opportunities

7 TOIE1 Timer/Counter 1 Overflow-Interrupt 0: No Int at overflow

1: Int at overflow

6 OCIE1A Timer/Counter 1 Compare A Interrupt 0: No Int at equal A

1: Int at equal A

5 OCIE1B Timer/Counter 1 Compare B Interrupt 0: No Int at B

1: Int at equal B

4 (Not used)

3 TICIE1 Timer/Counter 1 Capture Interrupt 0: No Int at Capture

1: Int at Capture

2 (Not used)

1 TOIE0 Timer/Counter 0 Overflow-Interrupt 0: No Int at overflow

1: Int at overflow

0 (Not used)

Port Function Port-Address RAM-Address

TIFR Timer Interrupt Flag Register 0x38 0x58

7 6 5 4 3 2 1 0

TOV1 OCF1A OCF1B - ICF1 - TOV0 -

Bit Name Meaning Opportunities

7 TOV1 Timer/Counter 1 Overflow reached
Interrupt-Mode:
Automatic Clear
by execution of the
Int-Routine

OR

Polling-Mode:
Clear by
instruction

6 OCF1A Timer/Counter 1 Compare A reached

5 OCF1B Timer/Counter 1 Compare B reached

4 (Not used)

3 ICF1 Timer/Counter 1 Capture-Event occurred

2 (not used)

1 TOV0 Timer/Counter 0 Overflow occurred

0 (not used)

Timer/Counter 0

Port Function Port-Address RAM-Address

TCCR0 Timer/Counter 0 Control Register 0x33 0x53

7 6 5 4 3 2 1 0

- - - - - CS02 CS01 CS00

Bit Name Meaning Opportunities

2..0 CS02..CS00 Timer Clock

000: Stop Timer

001: Clock = Chip clock

010: Clock = Chip clock / 8

011: Clock = Chip clock / 64

100: Clock = Chip clock / 256

101: Clock = Chip clock / 1024

110: Clock = falling edge of external Pin T0

111: Clock = rising edge of external Pin T0

3..7 (not used)

Avr-Asm-Tutorial 100 http://www.avr-asm-tutorial.net

Port Function Port-Address RAM-Address

TCNT0 Timer/Counter 0 count register 0x32 0x52

Timer/Counter 1

Port Function Port-Address RAM-Address

TCCR1A Timer/Counter 1 Control Register A 0x2F 0x4F

7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 - - PWM11 PWM10

Bit Name Meaning Opportunities

7 COM1A1

6 COM1A0
Compare Output A

5 COM1B1

4 COM1B0
Compare Output B

00: OC1A/B not connected
01: OC1A/B changes polarity
10: OC1A/B to zero
11: OC1A/B to one

3

2
(not used)

1..0
PWM11
PWM10

Pulse width modulator

00: PWM off
01: 8-Bit PWM
10: 9-Bit PWM
11: 10-Bit PWM

Port Function Port-Address RAM-Address

TCCR1B Timer/Counter 1 Control Register B 0x2E 0x4E

7 6 5 4 3 2 1 0

ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

Bit Name Meaning Opportunities

7 ICNC1
Noise Canceler
on ICP-Pin

0: disabled, first edge starts sampling

1: enabled, min four clock cycles

6 ICES1
Edge selection
on Capture

0: falling edge triggers Capture

1: rising edge triggers Capture

5..4 (not used)

3 CTC1
Clear at
Compare Match A

1: Counter set to zero if equal

2..0 CS12..CS10 Clock select

000: Counter stopped
001: Clock
010: Clock / 8
011: Clock / 64
100: Clock / 256
101: Clock / 1024
110: falling edge external Pin T1
111: rising edge external Pin T1

Port Function Port-Address RAM-Address

TCNT1L/H Timer/Counter 1 count register 0x2C/0x2D 0x4C/0x4D

Avr-Asm-Tutorial 101 http://www.avr-asm-tutorial.net

Port Function Port-Address RAM-Address

OCR1AL/H Timer/Counter 1 Output Compare register A 0x2A/0x2B 0x4A/0x4B hex

Port Function Port-Address RAM-Address

OCR1BL/H Timer/Counter 1 Output Compare register B 0x28/0x29 0x48/0x49

Port Function Port-Address RAM-Address

ICR1L/H Timer/Counter 1 Input Capture Register 0x24/0x25 0x44/0x45

Watchdog-Timer

Port Function Port-Address RAM-Address

WDTCR Watchdog Timer Control Register 0x21 0x41

7 6 5 4 3 2 1 0

- - - WDTOE WDE WDP2 WDP1 WDP0

Bit Name Meaning WDT-cycle at 5.0 Volt

7..5 (not used)

4 WDTOE Watchdog Turnoff Enable
Previous set to
disabling of WDE required

3 WDE Watchdog Enable 1: Watchdog active

2..0 WDP2..WDP0 Watchdog Timer Prescaler

000: 15 ms
001: 30 ms
010: 60 ms
011: 120 ms
100: 240 ms
101: 490 ms
110: 970 ms
111: 1,9 s

EEPROM

Port Function Port-Address RAM-Address

EEARL/H EEPROM Address Register 0x1E/0x1F 0x3E/0x3F

EEARH only in types with more than 256 Bytes EEPROM (from AT90S8515 upwards)

Port Function Port-Address RAM-Address

EEDR EEPROM Data Register 0x1D 0x3D

Port Function Port-Address RAM-Address

EECR EEPROM Control Register 0x1C 0x3C

7 6 5 4 3 2 1 0

- - - - - EEMWE EEWE EERE

Avr-Asm-Tutorial 102 http://www.avr-asm-tutorial.net

Bit Name Meaning Function

7..
3

(not used)

2 EEMWE EEPROM Master Write Enable Previous set enables write cycle

1 EEWE EEPROM Write Enable Set to initiate write

0 EERE EEPROM Read Enable Set initiates read

Serial Peripheral Interface SPI

Port Function Port-Address RAM-Address

SPCR SPI Control Register 0x0D 0x2D

7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

Bit Name Meaning Function

7 SPIE SPI Interrupt Enable
0: Interrupts disabled

1: Interrupts enabled

6 SPE SPI Enable
0: SPI disabled

1: SPI enabled

5 DORD Data Order
0: MSB first

1: LSB first

4 MSTR Master/Slave Select
0: Slave

1: Master

3 CPOL Clock Polarity
0: Positive Clock Phase

1: Negative Clock Phase

2 CPHA Clock Phase
0: Sampling at beginning of Clock Phase

1: Sampling at end of Clock Phase

1 SPR1

0 SPR0
SCK clock frequency

00: Clock / 4

01: Clock / 16

10: Clock / 64

11: Clock / 128

Port Function Port-Address RAM-Address

SPSR SPI Status Register 0x0E 0x2E

7 6 5 4 3 2 1 0

SPIF WCOL - - - - - -

Bit Name Meaning Function

7 SPIF SPI Interrupt Flag Interrupt request

6 WCOL Write Collision Flag Write collission occurred

5..0 (not used)

Port Function Port-Address RAM-Address

SPDR SPI Data Register 0x0F 0x2F

Avr-Asm-Tutorial 103 http://www.avr-asm-tutorial.net

UART

Port Function Port-Address RAM-Address

UDR UART I/O Data Register 0x0C 0x2C

Port Function Port-Address RAM-Address

USR UART Status Register 0x0B 0x2B

7 6 5 4 3 2 1 0

RXC TXC UDRE FE OR - - -

Bit Name Meaning Function

7 RXC UART Receive Complete 1: Char received

6 TXC UART Transmit Complete 1: Shift register empty

5 UDRE UART Data Register Empty 1: Transmit register available

4 FE Framing Error 1: Illegal Stop-Bit

3 OR Overrun 1: Lost char

2..0 (not used)

Port Function Port-Address RAM-Address

UCR UART Control Register 0x0A 0x2A

7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

Bit Name Meaning Function

7 RXCIE RX Complete Interrupt Enable 1: Interrupt on received char

6 TXCIE TX Complete Interrupt Enable 1: Interrupt at transmit complete

5 UDRIE Data Register Empty Interrupt Enable 1: Interrupt on transmit buffer empty

4 RXEN Receiver Enable 1: Receiver enabled

3 TXEN Transmitter Enable 1: Transmitter enabled

2 CHR9 9-bit Characters 1: Char length 9 Bit

1 RXB8 Receive Data Bit 8 (holds 9th data bit on receive)

0 TXB8 Transmit Data Bit 8 (write 9th data bit for transmit here)

Port Function Port-Address RAM-Address

UBRR UART Baud Rate Register 0x09 0x29

Analog Comparator

Port Function Port-Address RAM-Address

ACSR Analog Comparator Control and Status Register 0x08 0x28

7 6 5 4 3 2 1 0

ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

Bit Name Meaning Function

7 ACD Disable Disable Comparators

6 (not used)

5 ACO Comparator Output Read: Output of the Comparators

4 ACI Interrupt Flag 1: Interrupt request

Avr-Asm-Tutorial 104 http://www.avr-asm-tutorial.net

Bit Name Meaning Function

3 ACIE Interrupt Enable 1: Interrupts enabled

2 ACIC Input Capture Enable 1: Connect to Timer 1 Capture

1 ACIS1

0 ACIS0
Input Capture Enable

00: Interrupt on edge change

01: (not used)

10: Interrupt on falling edge

11: Interrupt on rising edge

I/O Ports

Port Register Function Port-Address RAM-Address

A

PORTA Data Register 0x1B 0x3B

DDRA Data Direction Register 0x1A 0x3A

PINA Input Pins Address 0x19 0x39

B

PORTB Data Register 0x18 0x38

DDRB Data Direction Register 0x17 0x37

PINB Input Pins Address 0x16 0x36

C

PORTC Data Register 0x15 0x35

DDRC Data Direction Register 0x14 0x34

PINC Input Pins Address 0x13 0x33

D

PORTD Data Register 0x12 0x32

DDRD Data Direction Register 0x11 0x31

PIND Input Pins Address 0x10 0x30

Ports, alphabetic order
ACSR, Analog Comparator Control and Status Register
DDRx, Port x Data Direction Register
EEAR, EEPROM address Register
EECR, EEPROM Control Register
EEDR, EEPROM Data Register
GIFR, General Interrupt Flag Register
GIMSK, General Interrupt Mask Register
ICR1L/H, Input Capture Register 1
MCUCR, MCU General Control Register
OCR1A, Output Compare Register 1 A
OCR1B, Output Compare Register 1 B
PINx, Port Input Access
PORTx, Port x Output Register
SPL/SPH, Stackpointer
SPCR, Serial Peripheral Control Register
SPDR, Serial Peripheral Data Register
SPSR, Serial Peripheral Status Register
SREG, Status Register
TCCR0, Timer/Counter Control Register, Timer 0
TCCR1A, Timer/Counter Control Register 1 A
TCCR1B, Timer/Counter Control Register 1 B
TCNT0, Timer/Counter Register, Counter 0
TCNT1, Timer/Counter Register, Counter 1
TIFR, Timer Interrupt Flag Register
TIMSK, Timer Interrupt Mask Register
UBRR, UART Baud Rate Register
UCR, UART Control Register
UDR, UART Data Register
WDTCR, Watchdog Timer Control Register

List of abbreviations
The abbreviations used are chosen to include the value range. Register pairs are named by the lower of
the two registers. Constants in jump instructions are automatically calculated from the respective labels

Avr-Asm-Tutorial 105 http://www.avr-asm-tutorial.net

during assembly.

Category Abbrev. Means ... Value range

Register

r1 Ordinary Source and Target register

r2 Ordinary Source register
R0..R31

rh Upper page register R16..R31

rd Twin register R24(R25), R26(R27), R28(R29), R30(R31)

rp Pointer register X=R26(R27), Y=R28(R29), Z=R30(R31)

ry Pointer register with displacement Y=R28(R29), Z=R30(R31)

Constant

k63 Pointer-constant 0..63

c127 Conditioned jump distance -64..+63

c255 8-Bit-Constant 0..255

c4096 Relative jump distance -2048..+2047

c65535 16-Bit-Address 0..65535

Bit b7 Bit position 0..7

Port
p1 Ordinary Port 0..63

pl Lower page port 0..31

	Why learning Assembler?
	Short and easy
	Fast and quick
	Assembler is easy to learn
	AVRs are ideal for learning assembler
	Test it!

	Hardware for AVR-Assembler-Programming
	The ISP-Interface of the AVR-processor family
	Programmer for the PC-Parallel-Port
	Experimental boards
	Experimental board with an ATtiny13
	Experimental board with an AT90S2313/ATmega2313

	Ready-to-use commercial programming boards for the AVR-family
	STK200
	STK500
	AVR Dragon

	Tools for AVR assembly programming
	From a text file to instruction words in the flash memory
	The editor
	Structuring assembler code
	Comments
	Things to be written on top
	Things that should be done at program start
	Structuring of program code
	The assembler

	Programming the chips
	Simulation in the studio
	What is a register?
	Different registers
	Pointer-registers
	Accessing memory locations with pointers
	Reading program flash memory with the Z pointer
	Tables in the program flash memory
	Accessing registers with pointers

	Recommendation for the use of registers

	Ports
	What is a Port?
	Write access to ports
	Read access to ports
	Read-Modify-Write access to ports
	Memory mapped port access
	Details of relevant ports in the AVR

	The status register as the most used port
	Port details

	SRAM
	Using SRAM in AVR assembler language
	What is SRAM?
	For what purposes can I use SRAM?
	How to use SRAM?
	Direct addressing
	Pointer addressing
	Pointer with offset

	Use of SRAM as stack
	Defining SRAM as stack
	Use of the stack
	Bugs with the stack operation

	Jumping and Branching
	Controlling sequential execution of the program
	What happens during a reset?

	Linear program execution and branches
	Branching

	Timing during program execution
	Macros and program execution
	Subroutines
	Interrupts and program execution

	Calculations
	Number systems in assembler
	Positive whole numbers (bytes, words, etc.)
	Signed numbers (integers)
	Binary Coded Digits, BCD
	Packed BCDs
	Numbers in ASCII-format

	Bit manipulations
	Shift and rotate
	Adding, subtracting and comparing
	Adding and subtracting 16-bit numbers
	Comparing 16-bit numbers
	Comparing with constants
	Packed BCD math

	Format conversion for numbers
	Conversion of packed BCDs to BCDs, ASCII or Binaries
	Conversion of Binaries to BCD

	Multiplication
	Decimal multiplication
	Binary multiplication
	AVR-Assembler program
	Binary rotation
	Multiplication in the studio

	Hardware multiplication
	Hardware multiplication of 8-by-8-bit binaries
	Hardware multiplication of a 16- by an 8-bit-binary
	Hardware multiplication of a 16- by a 16-bit-binary
	Hardware multiplication of a 16- by a 24-bit-binary

	Division
	Decimal division
	Binary division
	Program steps during division
	Division in the simulator

	Number conversion
	Decimal Fractions
	Linear conversions
	Example 1: 8-bit-AD-converter with fixed decimal output
	Example 2: 10-bit-AD-converter with fixed decimal output

	Floating point numbers in assembler language
	Floating points, if necessary
	The format of floating point numbers
	Conversion of binary to decimal number format
	Conclusion:

	Converting floating point numbers to decimal in assembler language
	Allocation of numbers
	Converting the mantissa to decimal
	Converting the exponent bits
	Rounding the decimal mantissa
	Conversion from BCD to ASCII
	Execution times

	Faster than above: converting a 40-bit-binary to decimal
	Conclusion

	Floating point arithmetic in assembly language
	Converting decimals to binary floating point numbers in assembler language
	Decimal number formats
	The assembler software for the conversion
	Detecting the negative sign
	Read the decimal mantissa and convert it to a binary integer
	Calculate the binary mantissa
	Determine the decimal exponent and convert it
	Normalization and sign processing
	Results

	Conclusion

	Address modes in AVRs
	Accessing SRAM, registers and port registers
	Accessing SRAM locations with fixed addresses
	Accessing SRAM location with pointers
	Accessing SRAM location with increasing pointers
	Accessing SRAM location with decreasing pointers
	Accessing SRAM locations with displacement addressing
	Accessing port registers
	Accessing classical port registers
	Access to extended port registers
	Access with pointers, example: the circular LED light
	Accessing EEPROM
	EEPROM initiation with the .ESEG directive
	EEPROM port registers
	Writing the EEPROM address
	Reading from the EEPROM
	Write access to the EEPROM
	Flash memory accesses
	The .CSEG directive
	The LPM instruction
	Advanced LPM instructions
	Use examples for LPM

	Annex
	Instructions sorted by function
	Directives and Instruction lists in alphabetic order
	Assembler directives in alphabetic order
	Instructions in alphabetic order

	Port details
	Status-Register, Accumulator flags
	Stackpointer
	SRAM and External Interrupt control
	External Interrupt Control
	Timer Interrupt Control
	Timer/Counter 0
	Timer/Counter 1
	Watchdog-Timer
	EEPROM
	Serial Peripheral Interface SPI
	UART
	Analog Comparator
	I/O Ports

	Ports, alphabetic order
	List of abbreviations

