
 AVR 8-bit Microcontrollers

 AVR1201: Using External Interrupts for tinyAVR
Devices

 APPLICATION NOTE

Introduction

This application note illustrates the functionality and provides steps to
configure the external interrupts available on the Atmel® tinyAVR® 8-bit
Microcontroller Family of Atmel AVR® microcontrollers. The application note
also describes the points to be considered while using a GPIO pin as an
external interrupt source pin.

The example codes have been implemented on ATtiny88 device with Atmel
Studio 7 and tested on an Atmel AVR STK®600 starter kit for functionality.

Features

• Flexible pin configuration
• Synchronous and asynchronous interrupt sensing
• Asynchronous wake-up signal to wake up from sleep modes
• Driver source code included for Atmel ATtiny88

– Basic external interrupt usage on ATtiny88
– Nested external interrupt usage on ATtiny88
– Generating software interrupt with external interrupt pin

configured as output on ATtiny88
– Using external interrupt to wake up device on ATtiny88

Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016



Table of Contents

Introduction......................................................................................................................1

Features.......................................................................................................................... 1

1. External Interrupt – Overview.................................................................................... 3
1.1. External Interrupt Vectors.............................................................................................................3
1.2. External Interrupt Sensing............................................................................................................4

1.2.1. Asynchronous Sensing in ATtiny88............................................................................... 5
1.2.2. Synchronous Sensing in ATtiny88................................................................................. 5

1.3. Interrupt Response Time.............................................................................................................. 5
1.4. Interrupt Priority............................................................................................................................5
1.5. Important Points to be Noted when using External Interrupts...................................................... 6

2. Getting Started...........................................................................................................7
2.1. Task 1: Basic External Interrupt Usage........................................................................................ 7
2.2. Task 2: Nested External Interrupt Usage......................................................................................8
2.3. Task 3: External Interrupt Based on Signal Change on Pin......................................................... 8
2.4. Task 4: External Interrupt for Device Wake-up............................................................................. 9

3. Driver Implementation..............................................................................................10

4. Revision History....................................................................................................... 11

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

2



1. External Interrupt – Overview
Interrupts are signals provided to the CPU of the microcontroller unit, either from internal peripheral
modules or from external pins of the MCU. It alters the regular flow of the program execution by enabling
the CPU to make a jump to execute instruction routines in some pre-defined location based on the
interrupt that occurred. When the CPU completes the routine, it gets back to the location from where it
had made a jump.

These pre-defined locations are called as the interrupt vector addresses or interrupt vectors.

An interrupt causes the device to save its state of execution and start executing the interrupt handler. For
Atmel AVR Microcontrollers the PC register is the only register that will be saved and the stack pointer
register is updated in the event of an interrupt. It is up to the user to save other registers like the status
register, 32 general purpose registers (register file), on an event of an interrupt, if there is such a
requirement in the application.

The interrupts are commonly used to save more time (such as multitasking) than the conventional polling
method (waiting for the event to occur indefinitely).

1.1. External Interrupt Vectors
The Atmel tinyAVR supports several interrupt sources out of which external interrupts are significant. The
external interrupts can be triggered using two sets of pins. INTn pins (ordinary external interrupt pins) and
PCINTn pins (pin change external interrupt pins). The ‘n’ varies from device to device and signifies the
number like INT0. Refer to the respective device datasheet for the specific values of n.

For Atmel ATtiny88 the numbers on external interrupt pins are as giben below.
• INT0 and INT1 Pins (with various input sense configurations)
• Pin change interrupts pins (PCINT27:0)

For each interrupt source, there is an interrupt vector to which the program execution control jumps, to
execute the corresponding service routine. The interrupt vectors for external interrupts on ATtiny88 are
shown in the following table. For device specific interrupt vectors, refer to the respective datasheet.

Table 1-1. External Interrupt Vector Address

Vector no. Program
address

Source Port pins in ATmega2560 Interrupt definitions

1 $000 RESET RESET External Pin, Power-on Reset,
Brown-out Reset,

Watchdog Reset, and JTAG AVR
Reset

2 $001 INT0 PD2 External Interrupt Request 0

3 $002 INT1 PD3 External Interrupt Request 1

4 $003 PCINT0 PCINT0:7 - PB0:7 Pin Change Interrupt Request 0

5 $004 INT3 PCINT8:15 - PC0:7 Pin Change Interrupt Request 1

6 $005 INT4 PCINT16:23 - PD0:7 Pin Change Interrupt Request 2

7 $006 INT5 PCINT24:27 - PA0:4(1) Pin Change Interrupt Request 3

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

3



Note:  1. Available in only 32-pin packages

The two external interrupt sources (INT0 & INT1) have dedicated interrupt vectors where as group of pin
change interrupts share the same interrupt vector as listed in table above.

Any signal level change in any of the eight pins PCINT0:7 (if enabled) will trigger the interrupt PCINT0.
This means that, if an interrupt is triggered by either the pin PCINT0 or PCINT4, the CPU will jump to the
same vector address $002. Similarly, any signal level change in any of the eight pins PCINT8:15 (if
enabled) will trigger the interrupt PCINT1 and any signal level change in any of the eight pins
PCINT16:23 (if enabled) will trigger the interrupt PCINT2 and any signal level change in any of the four
pins PCINT24:27 (if enabled) will trigger the interrupt PCINT3.

For pin change interrupt each of PCINT0 to PCINT7 is OR'ed together and synchronized. It is up to the
application code to solve the handling by keeping track of previous pin values and then in the interrupt
routine scan the present pin values to check which pin has changed. The same is applicable for
PCINT8:15 and PCINT16:23 and PCINT24:27

1.2. External Interrupt Sensing
External interrupts can be sensed and registered either synchronously or asynchronously. Synchronous
sensing requires I/O clock whereas asynchronous sensing does not requires I/O clock. This implies that
the interrupts that are detected asynchronously can be used for waking the device from sleep modes
other than idle mode because the I/O clock is halted in all sleep modes except idle mode.

The sense configuration for external interrupts and pin change interrupts for Atmel ATtiny88 is given in
table below. For device specific sense configuration, refer to the respective datasheet.

Table 1-2. External Interrupts Sense Configuration

Program address Interrupt source Sensing

$001 INT0 Asynchronous (level)

Synchronous (edges)

$002 INT1 Asynchronous (level)

Synchronous (edges)

$003 PCINT0 Asynchronous

$004 PCINT1 Asynchronous

$005 PCINT2 Asynchronous

$006 PCINT3 Asynchronous

From the table above all the pin change interrupts are detected asynchronously. Other interrupts (INT0
and INT1) can be triggered by sensing the rising or falling edges or low level on the corresponding
interrupt pins. The type of sensing (edge or level) for each of the INTn (n = 0 and 1 for ATtiny88)
interrupts is software configurable using two Interrupt Sense Control (ISC) bits per interrupt. This is
provided in the following table.

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

4



Table 1-3. External Interrupts Individual Sense Configuration

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request

0 1 Any edge of INTn generates an interrupt request

1 0 The falling edge of INTn generates an interrupt request

1 1 The rising edge of INTn generates an interrupt request

Note:  PCINT27:0 does not have sense configuration options. This means that the interrupt will be
generated whenever there is a logic change in the pin, that is, from high to low transition and low to high
transition.

1.2.1. Asynchronous Sensing in ATtiny88
From table 'External interrupts sense configuration', level interrupts in INT0 and INT1 and all the
PCINT27:0 are registered asynchronously. If low level interrupt is selected, the low level must be held
until the completion of the currently executing instruction to generate an interrupt.

1.2.2. Synchronous Sensing in ATtiny88
From table 'External interrupts sense configuration', edges of interrupts INT0 and INT1 are registered
synchronously. The value on the INT0 and INT1 pins are sampled before detecting edges. If edge or
toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt.
Shorter pulses are not guaranteed to generate an interrupt.

1.3. Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four/five clock cycles minimum.
This four/five clock cycles depends on the program counter width. If the program counter width is not
more than two bytes, then the interrupt response time will be four clock cycles minimum and if the
program counter width is more than two bytes, then the interrupt response time will be minimum five clock
cycles.

These four/five clock cycles include:
• Two/Three cycles for pushing the Program Counter (PC) value into the stack
• One cycle for updating the stack pointer
• One cycle for clearing the Global interrupt enable (I) bit

If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased
by five clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.
This start-up time is the time it will take to start the clock source.

1.4. Interrupt Priority
Priority for the interrupts is determined by the interrupt vector address. An interrupt with lowest interrupt
vector address has the highest priority. So reset has the highest priority followed by INT0, then INT1 and
so on. If two interrupts occurs simultaneously, then the interrupt with higher priority is served first.

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

5



1.5. Important Points to be Noted when using External Interrupts
1. If a level triggered interrupt is used for waking up the device from Power-down, the required level

must be held long enough for the MCU to complete the wake-up, to trigger the level interrupt. If the
level disappears before the end of the start-up time, the MCU will still wake up, but no interrupt will
be generated.

2. Both INT0 and INT1 should be configured to sense level interrupt to wake up the device from sleep
mode other than idle mode.

3. If enabled, a level triggered interrupt will generate an interrupt request as long as the pin is held
low.

4. When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended to first disable
INTn by clearing its Interrupt Enable bit in the EIMSK Register.

5. Before enabling an interrupt, it is recommended to clear the flag bit of the corresponding interrupt
because when the flag bit is set, the interrupt will be triggered the moment we enable the interrupt.

6. If enabled, interrupts will be triggered even when the pins are configured as outputs. This provides
a way of generating a software interrupt.

7. Most of the Atmel tinyAVR devices will have the reset pin multiplexed with some other functionality
like an interrupt source or an ADC input channel. To use an interrupt pin (multiplexed with reset pin)
the RSTDISBL (reset disable) fuse has to be programmed, otherwise the device will reset
whenever the interrupt pin goes low. Once the RSTDISBL fuse has been programmed, the ISP
interface becomes non-functional until the fuse is unprogrammed. So programming the AVR
through ISP interface is not possible. High voltage programming should be used to unprogram the
fuse.

8. Once the CPU enters the ISR, the global interrupt enable bit (I-bit) in SREG will be cleared so that
all other interrupts are disabled. In order to use nested interrupts, the I-bit has to be set by software
when the CPU enters an ISR.

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

6



2. Getting Started
This chapter walks you through the basic steps for getting started and running with the external interrupts
on Atmel megaAVR® devices. The tasks given below simply use the switches and LEDs available on
Atmel STK600. Without using STK600, these tasks can be verified by connecting a switch circuit and LED
circuit to the port pins directly as shown in the figure below

It is to be noted that the first three tasks uses some delay loops inside the interrupt service routine to
demonstrate the use of interrupts. Generally it is never recommended to use a delay routine inside the
ISR.

Figure 2-1. Basic LED and Switch Circuit

VTG

VTG

150R

10K
BC847W

To port pin

LED 43

21

150R
10K

VTG

To port pin

Switch

2.1. Task 1: Basic External Interrupt Usage
Task: Enable INT0 interrupt and pin change interrupt PCINT0 to light up one LED for each, in their
respective interrupt service routines.

1. Configure PORTC as output. To use the switches in the STK600 as interrupt source, enable pull-up
on PORTB (for PCINT0) and PORTD (for INT0).

2. Configure INT0 to sense rising edge. Enable the interrupts INT0 and PCINT0, and set the global
interrupt enable bit.

3. Inside the ISR of INT0, turn on LED0 and then turn off LED0 after some delay. Similarly for
PCINT0, turn on and off LED1 with some delay in between.

Hardware Setup:
1. Connect PORTC header to the LED header on the STK600 using a ten-wire ribbon cable.
2. Connect two wires; one between pins SW0 and PD2, and the other between SW1 and PB0.

Without using STK600, connect two LED circuits as shown in Figure 2-1 ; one at PC0 and another at
PC1, and two switch circuits; one at PD2 and another at PB0.

While running the example code when switch SW0 is pressed, due to pull-up the interrupt INT0 will be
triggered when SW0 is released and LED0 blinks once. When switch SW1 is pressed the interrupt
PCINT0 is triggered and LED1 blinks once, and when SW1 is released the interrupt PCINT0 is triggered
once again and LED1 blinks once again. So a single switch action (press and release) on SW1 produces
two blinks on LED1.

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

7



2.2. Task 2: Nested External Interrupt Usage
As mentioned, once the CPU enters the ISR, the global interrupt enable bit (I-bit) in SREG will be cleared
so that all other interrupts are disabled. In order to use nested interrupts, the I-bit is set by software when
the CPU enters an ISR.

Task: Enable INT0 and INT1 interrupts. Within the ISR of INT0 set the I-bit so that INT1 interrupt will be
sensed and executed (by jumping to ISR of INT1) while the CPU is inside ISR of INT0.

1. Configure PORTB0 and PORTC0 as outputs to turn ON LED0 and LED1 respectively. To use the
switches in the Atmel STK600 as interrupt source, enable pull-up on PORTD (since PD2 and PD3
are INT0 and INT1 respectively).

2. Configure INT0 and INT1 to sense rising edge. Enable the interrupts INT0 and INT1 and set the
global interrupt enable bit.

3. Inside the ISR of INT0, set the I-bit (using sei() instruction), turn on LED0 and then turn off LED0
after some delay. Similarly for INT1, turn on and off LED1 with some delay in between.

Hardware Setup:
1. Connect PB0 pin to LED0 and PC0 pin to LED1 using wires, on the STK600.
2. Connect two wires; one between pins SW0 and PD2 (for INT0), and the other between SW1 and

PD3 (for INT1).

Without using STK600, connect two LED circuits as shown in Figure 2-1; one at PB0 and another at PC0
and two switch circuits; one at PD0 and another at PD1.

While running the example code when switch SW0 is pressed, due to pull-up the interrupt INT0 will be
triggered only when SW0 is released and LED0 blinks for some time. During the time while LED0 is
glowing, a switch action on SW1 will trigger INT1 and hence the LED1 blinks for a moment and goes off.
This is because, inside the ISR of INT0, the I-bit is set so that all other interrupts are activated. So even
when the CPU is inside the INT0 routine it senses the interrupt INT1 and jumps to the ISR of INT1 and
executes the routine and then jumps back to ISR of INT0.

Comment the line ‘sei();’ in the ISR of INT0 and observe the output.

2.3. Task 3: External Interrupt Based on Signal Change on Pin
As mentioned before, once an interrupt is enabled it will be triggered even when the corresponding pin is
configured as output.

Task: Enable 16-bit Timer 1 in CTC mode with OC1A pin (PB1 pin - configured as output) (also PCINT1
pin) toggling on compare match. Enable the interrupt PCINT1 with the ISR containing a routine that turns
on and off the LED0 connected to PORTC. Pin Change Interrupt PCI0 triggers if a pin in PCINT[7:0] is
toggled while enabled. Here PCINT1 is enabled.

1. Configure PORTC0 as output to drive LED0.
2. Enable pin change interrupt PCINT1.Also set the global interrupt enable bit.
3. Configure Timer1 to operate in CTC mode (OCR1A as TOP) with OC1A pin toggling on compare

match. Load OCR1A with some value.
4. Configure OC1A pin (PCINT1 pin/PB1 pin) as output and start the timer with some prescalar value

(in the example code it is divide by 64).
5. Within the ISR turn on LED0 connected to PORTC0 and turn off LED0 after some delay.

Hardware Setup:

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

8



1. Connect a wire between pins PC0 and LED0.
2. Connect a wire between pins PB1 and LED1 to view the OC1A output.

Without using STK600, connect two LED circuits as shown in Figure 2-1; one at PC0 and another at PB1.

When running the example code, LED1 (connected to OC1A pin) toggles because of timer action.
Whenever LED1 switches OFF (means a transition from low to high – a rising edge) or switches ON
(means a transition from high to low – a falling edge), PCINT1 interrupt is triggered and so LED0 blinks
once.

2.4. Task 4: External Interrupt for Device Wake-up
Task: Enable INT0 and set the device in sleep mode. Use INT0 to wake up the device and turn ON the
LED to indicate that the device is in active mode.

1. Configure PORTB0 as output to drive LED0.
2. Enable pull-up on PORTC0 and PORTD2 to connect to switches SW0 and SW1 respectively.
3. Configure INT0 (on PORTD2) to sense level and enable INT0. Also, set the global interrupt enable

bit.
4. Set sleep mode to power-down mode and turn ON LED0.
5. Wait until switch SW0 is pressed. Once it is pressed, turn OFF LED0 (to indicate that the device

enters sleep mode) and enter into sleep mode.
6. Inside the ISR (after wake-up) turn ON LED0 to indicate that the device is in active mode now.

Repeat steps 5 and 6.

Hardware Setup:
1. Connect a wire between pins PB0 and LED0.
2. Connect a wire between pins PC0 and SW0 (this connection is to make the device enter sleep

mode).
3. Connect a wire between pins PD2 and SW1 (External Interrupt INT0 connection).

Without using STK600, connect one LED circuit as shown in Figure 2-1 at PB0 and two switch circuits;
one at PC0 and another at PD2.

By executing the example code LED0 will be turned ON. Once SW0 is pressed LED0 is turned OFF and
the device enters sleep mode. Now a switch action on SW1 wakes up the device and turns ON LED0.

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

9



3. Driver Implementation
The example code is written for Atmel START. It can be downloaded from the "BROWSE EXAMPLES"
entry of Atmel START for both Atmel Studio 7 and IAR™ IDE. Double click the downloaded .atzip file and
project will be imported to Atmel Studio 7.

To import the project in IAR, refer "Atmel START in IAR" , select Atmel Start Output in External Tools ->
IAR.

Note:  This external interrupt driver is not intended for use with high-performance code. It is designed as
a library to get started with the external interrupts.

The example codes included are:
• Basic external interrupt usage on ATtiny88
• Nested external interrupt usage on ATtiny88
• Generating software interrupt with external interrupt pin configured as output in ATtiny88
• External interrupt for device wake-up of ATtiny88

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

10

http://start.atmel.com/static/help/index.html


4. Revision History
Doc. Rev. Date Comments

8469B 09/2016 Renamed AVR Studio 5 to Atmel Studio. 2.1 External interrupt vectors:
Updated Table 1-1. "External Interrupts Sense Configuration".

8469A 01/2011 Initial document release

Atmel AVR1201: Using External Interrupts for tinyAVR Devices [APPLICATION NOTE]
Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

11



Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-8469B-Using-External-Interrupts-for-tinyAVR-Devices_AVR1201_Application Note-09/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, megaAVR®, tinyAVR®, STK® and others are registered trademarks or
trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. External Interrupt – Overview
	1.1. External Interrupt Vectors
	1.2. External Interrupt Sensing
	1.2.1. Asynchronous Sensing in ATtiny88
	1.2.2. Synchronous Sensing in ATtiny88

	1.3. Interrupt Response Time
	1.4. Interrupt Priority
	1.5. Important Points to be Noted when using External Interrupts

	2. Getting Started
	2.1. Task 1: Basic External Interrupt Usage
	2.2. Task 2: Nested External Interrupt Usage
	2.3. Task 3: External Interrupt Based on Signal Change on Pin
	2.4. Task 4: External Interrupt for Device Wake-up

	3. Driver Implementation
	4. Revision History

